

Staff Report City of Manhattan Beach

TO:

Honorable Mayor Aldinger and Members of the City Council

THROUGH: Geoff Dolan, City Manager

FROM:

Richard Thompson, Director of Community Development

Angelica Ochoa, Assistant Planner

DATE:

August 7, 2007

SUBJECT:

Consideration of a Determination that the City is in Compliance With the Program

Requirements of the 2007 Congestion Management Program (CMP) for Los

Angeles County as Prepared by the Metropolitan Transportation Authority (MTA).

RECOMMENDATION:

Staff recommends that the City Council **CONDUCT** the public hearing and **ADOPT** Resolution No. 6110 demonstrating the City's compliance with the program requirements of the 2007 Congestion Management Program (CMP).

FISCAL IMPLICATION:

Local jurisdictions are required to meet the program requirements identified in the CMP to continue to be eligible to receive Section 2105 gas tax funding. The City annually receives approximately \$220,000 in Section 2105 Local Gas Tax Subvention funds.

BACKGROUND:

Los Angeles is one of thirty-two counties within the state required to develop a Congestion Management Program. The MTA is the agency responsible for preparing the CMP for Los Angeles County. The main goal of the CMP is to mitigate traffic impacts in the county associated with new development. In addition, the CMP is Federally mandated under the provisions of the 1992 Intermodal Surface Transportation Efficiency Act (ISTEA) which requires the development of congestion management programs.

A public hearing notice was published in the Beach Reporter on July 26, 2007 as part of the CMP implementation responsibilities. The local compliance process requires certification through the adoption of a Resolution of Compliance, and submittal of a Local Development Report (LDR). A Resolution of Compliance is attached as Exhibit A, and the LDR is attached as Exhibit B.

Agenda Item #:		
----------------	--	--

DISCUSSION:

Local Responsibility

The MTA assigns traffic mitigation measures to individual jurisdictions based upon development activity. Each jurisdiction is responsible for monitoring new developments and mitigating impacts on an annual basis. The MTA has established a point system which places a specific debit value (traffic impact) for each type of development and which establishes a mitigation goal for the jurisdiction. This system ensures that jurisdictions responsible for impacts will be assigned mitigation responsibilities for each project.

The CMP includes mitigation strategies which are categorized as land use, transportation demand management, transit, transportation system management, and capital improvement strategies for example, street widening at Sepulveda Blvd. and Rosecrans Ave., double left turn lanes added at Sepulveda Blvd. and Manhattan Beach Blvd. and Sepulveda Blvd. and Artesia Blvd. Implementing these strategies would generate credits to offset debits accrued by new development. The intent of the CMP is to establish credit values through the implementation of mitigation measures and, thus maintaining a credit balance. The City currently has a credit balance of 2,008 points toward new development activity for future years. Since 2003, the City of Manhattan Beach has not accrued new credits or debits because the program has been suspended.

2007 Changes

In August of 2003, the MTA Board adopted a 2003 Short Range Transportation Plan. The Board directed MTA staff to conduct a Nexus Study to determine the feasibility of implementing a countywide impact fee to meet CMP requirements. This system will replace the credit/debit system currently in place. Until the Nexus Study is complete (estimated to be Fall 2007), the MTA has suspended the credit/debit program, the necessity to mitigate development impacts or generate credits.

For 2007, the city's credit balance will remain the same. The attached LDR for 2007 reports new development activity and demolitions. MTA staff has indicated that any new development activity reported this year will not be counted retroactively if the MTA decides to continue the credit/debit program at a future date. In order to stay in compliance, the city must continue to report their development activity through the Local Development Report (LDR).

2007 Local Development Report

The reporting period for the current Local Development Report covers June 1, 2006 through May 31, 2007. The City of Manhattan Beach LDR is attached as Exhibit B. The following summarizes the contents of this report.

- 1) <u>Deficiency Plan Status Summary</u>: This item (Section I, pg. 1) provides a summary of the City's CMP compliance for the required reporting period. The summary indicates the total number of units and square footage of new commercial development categories after subtracting for demolitions.
- 2) New Development Activity Report: This section (Section I, pg. 2) summarizes the City's development activity for the reporting period. This section is comprised of three reports, these are:

- a) New Development Activity (Section I, pg. 2) This section quantifies the total number of building permits issued between June 1, 2006 and May 31, 2007 by land use type.
- b) New Development Adjustments (Section I, pg. 3) This section quantifies the total number of demolitions between June 1, 2006 and May 31, 2007 by land use type.
- c) Exempted Development Activity (Section I, pg. 4) This section quantifies the total number of exemptions between June 1, 2006 and May 31, 2007.
- 3) <u>CMP Highway Monitoring Data</u>: This documents details the results of the City's biennial highway monitoring data for 2007. This report complies with the CMP requirements and is completed every odd numbered year.

CONCLUSION:

Per the requested Local Development Report, and the adoption of the attached resolution, the City of Manhattan Beach is in compliance with the 2007 Congestion Management Program requirements.

Attachments: Exhibit A Resolution of Compliance No. 6110

Exhibit B Local Development Report 2006-2007

Exhibit C 2006-2007 Non-residential development activity Exhibit D 2006-2007 Residential development activity

Exhibit E CMP Highway Monitoring data

CC: Jim Arndt, Director of Public Works Dana Greenwood, City Engineer Erik Zandvliet, Traffic Engineer

RESOLUTION NO. 6110

A RESOLUTION OF THE CITY COUNCIL OF THE CITY OF MANHATTAN BEACH, CALIFORNIA, FINDING THE CITY TO BE IN CONFORMANCE WITH THE CONGESTION MANAGEMENT PROGRAM (CMP) AND ADOPTING THE CMP LOCAL DEVELOPMENT REPORT, IN ACCORDANCE WITH CALIFORNIA GOVERNMENT CODE SECTION 65089

WHEREAS, CMP statute requires the Los Angeles County Metropolitan Transportation Authority ("LACMTA"), acting as the Congestion Management Agency for Los Angeles County, to annually determine that the County and cities within the County are conforming to all CMP requirements; and

WHEREAS, LACMTA requires submittal of the CMP Local Development Report by September 1 of each year; and

WHEREAS, the City Council held a noticed public hearing on August 7, 2007.

NOW, THEREFORE, THE CITY COUNCIL FOR THE CITY OF MANHATTAN BEACH DOES HEREBY RESOLVE AS FOLLOWS:

SECTION 1. That the City has taken all of the following actions, and that the City is in conformance with all applicable requirements of the 2004 CMP adopted by the LACMTA Board on July 22, 2004.

By June 15, of odd-numbered years, the City will conduct annual traffic counts and calculated levels of service for selected arterial intersections, consistent with the requirements identified in the CMP Highway and Roadway System chapter.

The City has locally adopted and continues to implement a transportation demand management ordinance, consistent with the minimum requirements identified in the CMP Transportation Demand Management chapter.

The City has locally adopted and continues to implement a land use analysis program, consistent with the minimum requirements identified in the CMP Land Use Analysis Program chapter.

The City has adopted a Local Development Report, attached hereto and made a part hereof, consistent with the requirements identified in the 2004 CMP. This report balances traffic congestion impacts due to growth within the City with transportation improvements, and demonstrates that the City is meeting its responsibilities under the Countywide Deficiency Plan consistent with the LACMTA Board adopted 2003 Short Range Transportation Plan.

<u>SECTION 2</u>. That the City Clerk shall certify to the adoption of this Resolution and shall forward a copy of this Resolution to the Los Angeles County Metropolitan Transportation Authority.

SECTION 3. The City Clerk shall make this resolution available for public inspection within thirty (30) days of the date this Resolution is adopted.

PASSED, APPROVED AND ADOPTED this 7th day of August, 2007.

Absent: Abstain: Mayor, City of Manhattan Beach, California ATTEST: City Clerk APPROVED AS TEARM: By City Attorney	Ayes: Noes:	
Mayor, City of Manhattan Beach, California ATTEST: City Clerk APPROVED AS TO FORM: By		
ATTEST: City Clerk APPROVED AS TO FORM: By		
ATTEST: City Clerk APPROVED AS TO FORM: By		
ATTEST: City Clerk APPROVED AS TO FORM: By		
ATTEST: City Clerk APPROVED AS TO FORM: By		
ATTEST: City Clerk APPROVED AS TO FORM: By		Mayor, City of Manhattan Beach, California
City Clerk APPROVED AS TO FORM:		
City Clerk APPROVED AS TO FORM:		
APPROVED AS TO FORM:	ATTEST:	
APPROVED AS TO FORM:		
APPROVED AS TO FORM:		
APPROVED AS TO FORM:	City Clerk	
By Bold January	Only Oldin	
By Bold January	. //	
By Bold January	<i>!\</i> !//	
By Bold January		
By City Attorney	APPROVED AS TORM: / /////	
By City Attorney	<i>7/// htt-</i> ///////	
City Attorney	By Sold Market	
	City Attorney	

CITY OF MANHATTAN BEACH

2007 CMP Local Development Report

Reporting Period: JUNE 1, 2006 - MAY 31, 2007

Contact: Angelica Ochoa, Assistant Planner

Phone Number: (310) 802-5517

CONGESTION MANAGEMENT PROGRAM FOR LOS ANGELES COUNTY

Date Prepared:

1,000 Net Sq.Ft.2

1,000 Net Sq.Ft.² 0.00

0.00

1,196.00

0.00 0.00

(1,063.00)0.00

0.00

0.00

July 27, 2007

2007 DEFICIENCY PLAN SUMMARY¹

* IMPORTANT: All "#value!" cells on this page are automatically calculated. Please do not enter data in these cells.

DEVELOPMENT TOTALS

RESIDENTIAL DEVELOPMENT ACTIVITY **Dwelling Units** Single Family Residential (1.00)Multi-Family Residential 6.00 **Group Quarters** 0.00

COMMERCIAL DEVELOPMENT ACTIVITY

(1,162.00)Commercial (less than 300,000 sq.ft.) Commercial (300,000 sq.ft. or more) 0.00 Freestanding Eating & Drinking (4,440.00)

NON-RETAIL DEVELOPMENT ACTIVITY

Lodging Industrial Office (less than 50,000 sq.ft.) Office (50,000-299,999 sq.ft.) Office (300,000 sq.ft. or more) Medical Government Institutional/Educational

OTHER DEVELOPMENT ACTIVITY

University (# of students)

Daily Trips ENTER IF APPLICABLE 0.00 **ENTER IF APPLICABLE** 0.00

EXEMPTED DEVELOPMENT TOTALS

Exempted Dwelling Units 0 Exempted Non-residential sq. ft. (in 1,000s)

Section I, Page 1

2. Net square feet is the difference between new development and adjustments entered on pages 2 and 3

^{1.} Note: Please change dates on this form for later years.

CITY OF MANHATTAN BEACH

2007 CMP Local Development Report

Reporting Period: JUNE 1, 2006 - MAY 31, 2007

Date Prepared: July 27, 2007

Enter data for all cells labeled "Enter." If there are no data for that category, enter "0."

Dwelling
Units
130.00
39.00
0.00
1,000 Gross
Square Feet
5,800
0.00
8,499
1,000 Gross
Square Feet
0.00
0.00
1,196
0.00
0.00
0.00
0.00
0.00
0.00
Daily Trips
(Enter "0" if none)
0.00
0.00

Section I, Page 2

CITY OF MANHATTAN BEACH

2007 CMP Local Development Report

Reporting Period: JUNE 1, 2006 - MAY 31, 2007

Date Prepared: July 27, 2007

Enter data for all cells labeled "Enter." If there are no data for that category, enter "0."

PART 2: NEW DEVELOPMENT ADJUSTMENTS

IMPORTANT: Adjustments may be claimed only for 1) development permits that were both issued and revoked, expired or withdrawn during the reporting period, and 2) demolition of any structure with the reporting period.

RESIDENTIAL DEVELOPMENT ADJUSTMENTS	
Category	Dwelling
[g ,	Units
Single Family Residential	131.00
Multi-Family Residential	33.00
Group Quarters	0.00
COMMERCIAL DEVELOPMENT ACTIVITY	
Category	1,000 Gross
	Square Feet
Commercial (less than 300,000 sq.ft.)	6,962
Commercial (300,000 sq.ft. or more)	0.00
Freestanding Eating & Drinking	12,939
NON-RETAIL DEVELOPMENT ACTIVITY	
Category	1,000 Gross
	Square Feet
Lodging	0.00
Industrial	0.00
Office (less than 50,000 sq.ft.)	0.00
Office (50,000-299,999 sq.ft.)	0.00
Office (300,000 sq.ft. or more)	0.00
Medical	1,063
Government	0.00
Institutional/Educational	0.00
University (# of students)	0.00
OTHER DEVELOPMENT ACTIVITY	
Description	Daily Trips
(Attach additional sheets if necessary)	(Enter "0" if none)
ENTER IF APPLICABLE	0.00
ENTER IF APPLICABLE	0.00

Section I, Page 3

CITY OF MANHATTAN BEACH 2007 CMP Local Development Report Reporting Period: JUNE 1, 2006 - MAY	Date Prepared: July 27, 2007 31, 2007
Enter data for all cells labeled "Enter." If there are	no data for that category, enter "0."
PART 3: EXEMPTED DEVELOPMENT ACT	
(NOT INCLUDED IN NEW DEVELOPMENT ACT	VIII TOTALS)
Low/Very Low Income Housing	0 Dwelling Units
High Density Residential Near Rail Stations	0 Dwelling Units
Mixed Use Developments Near Rail Stations	1,000 Gross Square Feet Dwelling Units
Development Agreements Entered into Prior to July 10, 1989	0 1,000 Gross Square Feet Dwelling Units
Reconstruction of Buildings Damaged in April 1992 Civil Unrest	0 1,000 Gross Square Feet Dwelling Units
Reconstruction of Buildings Damaged in Jan. 1994 Earthquake	1,000 Gross Square Feet Dwelling Units
Total Dwelling Units	0

Section I, Page 4

Exempted Development Definitions:

- 1. Low/Very Low Income Housing: As defined by the California Department of Housing and Community Development as follows:
 - Low-Income: equal to or less than 80% of the County median income, with adjustments for family size.
 - Very Low-Income: equal to or less than 50% of the County median income, with adjustments for family size.
- 2. High Density Residential Near Rail Stations: Development located within 1/4 mile of a fixed rail passenger station and that is equal to or greater than 120 percent of the maximum residential density allowed under the local general plan and zoning ordinance. A project providing a minimum of 75 dwelling units per acre is automatically considered high density.
- Mixed Uses Near Rail Stations: Mixed-use development located within 1/4 mile of a fixed rail passenger station, if more than half of the land area, or floor area, of the mixed use development is used for high density residential housing.
- 4. Development Agreements: Projects that entered into a development agreement (as specified under Section 65864 of the California Government Code) with a local jurisdiction prior to July 10, 1989.
- 5. Reconstruction or replacement of any residential or non-residential structure which is damaged or destroyed, to the extent of > or = to 50% of its reasonable value, by fire, flood, earthquake or other similar calamity.
- 6. Any project of a federal, state or county agency that is exempt from local jurisdiction zoning regulations and where the local jurisdiction is precluded from exercising any approval/disapproval authority. These locally precluded projects do not have to be reported in the LDR.

2006-2007 Congestion Management Program Non-residential Development Activity

	New Construction		
Month	Address	Description	Square Footage
2007			
March	838 Manhattan Beach Blvd.	Office	1,196
April	2610 N. Sepulveda Blvd.	Restaurant	8,499
April	1727 Artesia Blvd.	Retail	5,800

	Demolition		
Month	Address	Description	Square Footage
2006			
July	1100 Manhattan Avenue	Commercial	1,562
December	1300 Highland Avenue	Restaurant	4,967
December	1001 Manhattan Avenue	Commercial	5,400
2007			
March	2610 N. Sepulveda Blvd.	Restaurant	7,972
April	1551 Artesia Blvd.	Medical	1,063

2006-2007 Congestion Management Program Residential Development Activity

	SFR Demo	SFR New		Multi Demo	Multi New
Months					
June	1	9	13	2	2
July		6	6	0	2
August	1	3	13	0	0
September	1	7	13	4	2
October		7	16	2	3
November	1	1	11	2	2
December	1	0	12	2	2
January	1	1	10	3	6
February		5	12	0	2
March		9	7	16	5
April	1	5	7	0	0
May		8	10	2	13
Totals	13	1	130	33	39

City of Manhattan Beach

Community Development

Phone: (310) 802-5500 FAX: (310) 802-5501 TDD: (310) 546-3501

April 3, 2007

Stacy Alameida
CMP Manager
Los Angeles County Metropolitan Transportation Authority
One Gateway Plaza - M/S 99-23-2
Los Angeles, CA 90012-2952

Dear Ms. Alameida:

The City of Manhattan Beach hereby transmits results of our biennial highway monitoring, collected in accordance with the requirements of the Congestion Management Program. The enclosed Level of Service calculations are summarized as follows:

	PM Peak Ho	our Average	0.942	${f E}$
•	03-08-07	5:00-6:00 PM	0.915	E
	03-07-07	4:45-5:45 PM	0.969	Е
	AM Peak H	our Average	0.884	D
Rosecrans Avenue	03-08-07	7:45-8:45 AM	<u>0.881</u>	D
Sepulveda Boulevard &	03-07-07	7:45-8:45 AM	0.887	D
Intersection	<u>Date</u>	Peak Hour	V/C Ratio	<u>LOS</u>

If you have any questions, please contact me at (310) 802-5540 or (562) 908-6254.

Sincerely,

Erik Zandvliet

City Traffic Engineer

G:\Traffic Engineering\Projects-Studies\CMP\CMP 2007\letter-CMP-2007.doc

Surwhit

EXHIBIT

INTERSECTION LAYOUT

Intersection:	SEPULVEDA BLV	<u>'D & ROSECRAN</u>	IS AVE	
Date:	03/13/2007	Drawn I	3y: <u>JL</u>	
CMP Monitoring	Station No:	110	 	
		SEPULVEDA	A BLVD.	RIGHT LANE MUST TURN RIGHT 6-9 AM 3-6 PM MON - FRI
ROSECR	ANS AVE		** ** ** ** **	
North		5	Signal Phasing	g Diagram: 3
KEY:	·			

Intersection:

Sepulveda Boulevard & Rosecrans Avenue

Count Date:

03/07/07

Peak Hour:

7:45-8:45 AM

Analyst:

JL

Agency:

Manhattan Beach

CMP Monitoring Station #:

Домально	Lettine	Munidar af Lausa		VERMO	Officil V(c	Trans
NB Left	305	2	2880	0.106		
NB Thru	3212	4	6400	0.502	x	
NB Right	329	1	1600	0.206		
SB Left	288	2	2880	0.100	X	
SB Thru	1141	3	4800	0.238		
SB Right	77	1	1600	0.048		
EB Left	229	2	2880	0.080		
EB Thru	530	3	4800	0.110	X	
EB Right	149	1	1600	0.093		
	to plan the		11324	100000	40 1 1 1	
WB Left	214	2	2880	0.074	Х	į.
WB Thru	247	3	4800	0.051		
WB Right	230	1	1600	0.144		
		4.4				
Sum of Critical V/C						0.787
Adjustment for Lost						0.100
ntersection Capacit						0.887
Level of Service (LOS) - Refer to table below			D			

Motes.
Per lane Capacity = 1,600 VPH Dual turn lane Capacity = 2,880 VPH

	etraximum
L08	-VIG
Α	0.6
В	0.7
С	0.8
D	0.9
E	1
F	n/a

Intersection:

Sepulveda Boulevard & Rosecrans Avenue

Count Date:

03/08/07

Peak Hour: 7:45-8:45 AM

Analyst:

Agency:

Manhattan Beach

CMP Monitoring Station #:

		Nonetakori			ાં છે.	
a memercall	And the state of t	EMES .	- Gapagley	AVIOLE IIIO		
NB Left	307	2	2880	0.107		
NB Thru	3185	4	6400	0.498	Х	
NB Right	365	1	1600	0.228		
SB Left	291	2	2880	0.101	Х	
SB Thru	1035	3	4800	0.216		
SB Right	75	1	1600	0.047		
EB Left	290	2	2880	0.101		
EB Thru	573	3	4800	0.119	Х	
EB Right	190	1	1600	0.119		
	ac e Sude	en la company				
WB Left	181	2	2880	0.063	Х	
WB Thru	248	3	4800	0.052		
WB Right	188	1	1600	0.118		
Sum of Critical V/C						0.781
Adjustment for Lost						0.100
Intersection Capacit						0.881
Level of Service (LC	OS) - Refer to ta	able below				Đ

Ŋ	
1.	Per lane Capacity = 1,600 VPH Dual turn lane Capacity = 2,880 VPH

	Hashitti
TOP.	<i>₩</i> €
Α	0.6
В	0.7
С	0.8
D	0.9
E	1
F	n/a

Intersection:

Sepulveda Boulevard & Rosecrans Avenue

Count Date:

03/07/07

Peak Hour:

4:45-5:45 PM

Analyst:

JL

Agency:

Manhattan Beach

CMP Monitoring Station #:

		Minigation			િ (દેશના કરા	
Judinexalle.	Yelline !	lanes .	Centrolisy	VE Raio	V//,6)	Tine
NB Left	222	2	2880	0.077	X	
NB Thru	1279	4	6400	0.200		
NB Right	231	1	1600	0.144		
SB Left	454	2	2880	0.158		
SB Thru	2893	3	4800	0.603	×	-[
SB Right	209	1	1600	0.131		
EB Left	157	2	2880	0.055		Ť
EB Thru	386	3	4800	0.080	×	a de la complada a
EB Right	171	1	1600	0.107		
		Part March			100	
WB Left	314	2	2880	0.109	X	
WB Thru	197	3	4800	0.041		
WB Right	156	1	1600	0.098		
	9.00		100			
Sum of Critical V/C I						0.869
Adjustment for Lost						0.100
ntersection Capacit						0.969
Level of Service (LO	S) - Refer to tal	ble below				E

Ž	©1(3)3
	Per lane Capacity = 1,600 VPH Dual turn lane Capacity = 2,880 VPH

	iniolni)) (es
Los	yjc
Α	0.6
В	0.7
С	0.8
D	0.9
E	1
F	n/a
·	

Intersection:

Sepulveda Boulevard & Rosecrans Avenue

Count Date:

03/08/07

Peak Hour:

5:00-6:00 PM

Analyst:

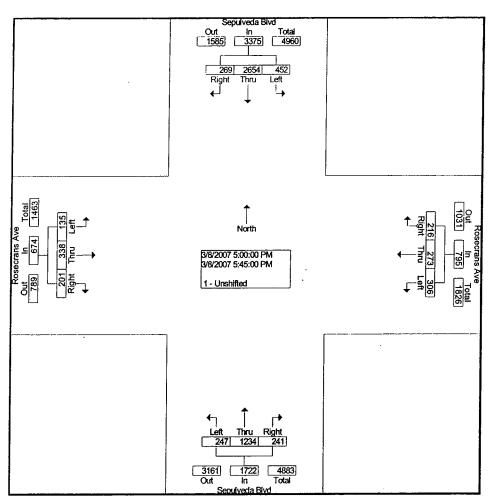
JL

Agency:

Manhattan Beach

CMP Monitoring Station #:

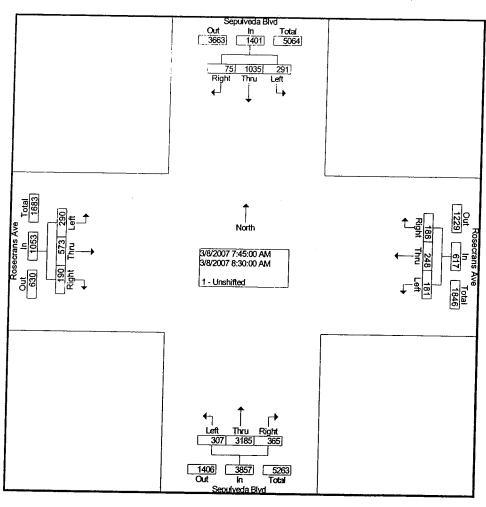
		Numier of			્ર કેરેલાન્ટ્રો	
Movemen	Youtime	remes	Spirities.	MGKahe		i ioe
NB Left	247	2	2880	0.086	Х	
NB Thru	1234	4	6400	0.193		
NB Right	241	1	1600	0.151		
THE STREET STREET, STR						
SB Left	452	2	2880	0.157		_
SB Thru	2654	3	4800	0.553	Х	
SB Right	269	1	1600	0.168		
EB Left	135	2	2880	0.047		
EB Thru	338	3	4800	0.070	X	Care an improve any more annihila
EB Right	201	1	1600	0.126		
WB Left	306	2	2880	0.106	Х	
WB Thru	273	3	4800	0.057		
WB Right	216	1	1600	0.135		
Sum of Critical V/C						0.815
Adjustment for Lost						0.100
Intersection Capacit						0.915
Level of Service (LC	DS) - Refer to ta	ble below				E


Market and the control of the contro
NUCSE PER EXPERIENCE DE LA COMPANIO DEL COMPANIO DE LA COMPANIO DEL COMPANIO DE LA COMPANIO DEL COMPANIO DEL COMPANIO DE LA COMPANIO DEL COMPANIO DEL COMPANIO DEL COMPANIO DEL COMPANION DEL COMPANIO DEL COMPANION DEL COMPANIO DEL COMPANIO DEL COMPANION DEL COMPA
i
4. Denlana Canasita 4 000 V/DI I
1. Per lane Capacity = 1,600 VPH
0. Decel term land Constalt = 0.000 \ /DU
2. Dual turn lane Capacity = 2,880 VPH
· · · · · · · · · · · · · · · · · · ·

	THE MILLERY
THE STATE OF THE S	
^	0.6
A	0.0
В	0.7
•	
С	0.8
D	0.9
	0.0
E	1
	. `
l F	n/a
i ·	
1	

File Name : seprose8th Site Code : 00000000

Start Date : 3/8/2007


	: -	•	eda Blvd nbound		Rosecrans Ave Westbound			Sepulveda Blvd Northbound				Rosecrans Ave Eastbound						
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total	
Peak Hour From	12:00 F	PM to 05	5:45 PM	- Peak 1	of 1													
Intersection	05:00 F	PM													•	i		
Volume	452	2654	269	3375	306	273	216	795	247	1234	241	1722	135	338	201	674	6566	
Percent	13.4	78.6	8.0		38.5	34.3	27.2		14.3	71.7	14.0		20.0	50.1	29.8	Ì		
05:45 Volume	121	665	65	851	102	78	55	235	54	296	69	419	41	89	63	193	1698	
Peak Factor																1	0.967	
High Int.	05:30 F	M		i	05:45 F	5 PM		05:15 F	05:15 PM				05:45 [15 PM			
Volume Peak Factor	118	700	97	915 0.922	102	78	55	235 0.846	65	335	67	467 0.922	41	89	63	193 0.873		

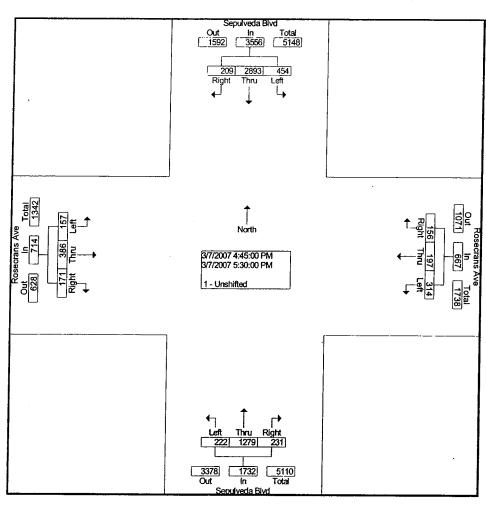
File Name : seprose8th Site Code : 00000000

Start Date : 3/8/2007
Page No : 2

			eda Blvo bound		Rosecrans Ave Westbound				Sepulveda Blvd Northbound				Rosecrans Ave Eastbound				
Start Time	Left	Thru		App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int.
Peak Hour From	1 07:00 A	AM to 11	:45 AM	- Peak 1	of 1		L		·		!-	1000	LL			rotal_	Total
Intersection	07:45 A	λM			1				i								
Volume	291	1035	75	1401	181	248	188	617	307	3185	365	3857	290	573	190	1053	6928
Percent 07:45	20.8	73.9	5.4		29.3	40.2	30.5		8.0	82.6	9.5		27.5	54.4	18.0	1000	0928
Volume	68	258	25	351	45	80	48	173	72	766	98	936	75	167	71	313	1773
Peak Factor																	
	08:00 A				08:15 A	M			08:00 A	M			07:45 A	м		ļ	0.977
Volume Peak Factor	69	281	21	371 0.944	61	69	52	182 0.848	86	843	84	1013 0.952	75	167	71	313 0.841	

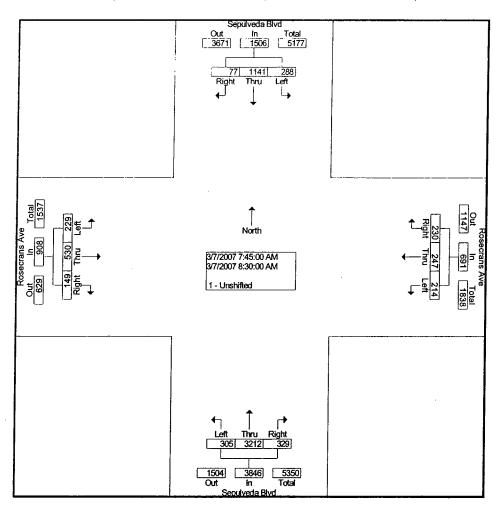
File Name : seprose8th Site Code : 00000000

Start Date : 3/8/2007


Page No : 1

Groups Printed- 1 - Unshifted

	Groups Printed- 1 - Unshifted													
1			pulveda Blv	/d	Ros	secrans Av	e	Se	pulveda Blv	′d	Ro			
			outhbound			estbound/		N	lorthbound		E			
	Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
L	Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
	07:00 AM	25	179	19	37	53	45	50	809	42	42	89	12	1402
	07:15 AM	56	240	14	51	72	48	67	784	51	61	95	15	1554
	07:30 AM	55	260	18	36	51	56	52	872	84	44	104	30	1662
	07:45 AM	68	258	25	45	80	48	72	766	98	75	167	71	1773
	Total	204	937	76	169	256	197	241	3231	275	222	455	128	6391
	MA 00:80	69	281	21	39	48	39	86	843	84	57	135	39 :	1741
	08:15 AM	94	231	15	61	69	52	90	779	74	84	143	33	1725
	08:30 AM	60	265	14	36	51	49	59	797	109	74	128	47	1689
	08:45 AM	89	222	23	52	49	59	85	576	100	55	148	62	1520
	Total	312	999	73	188	217	199	320	2995	367	270	554	181	6675
	04:00 PM	91	573	39	70	47	70	64	250	04	20		201	
	04:00 FM	106	573 581	37	70 92		78	61	350	64	29	68	36	1506
	04:30 PM	129	664	52	92 79	45 55	74	64	334	80	47	82	45	1587
	04:30 PM	74	633	43	79 95	55 69	62 58	49 62	338	72	44	62	40	1646
	Total	400	2451	171	336	216	272	236	305	86	40	85	49	1599
				1711	330	210	2/2	230	1327	302	160	297	170	6338
	05:00 PM	117	628	52	65	67	45	61	298	50	37	101	34	1555
	05:15 PM	96	661	55	72	60	69	65	335	67	29	86	56	1651
	05:30 PM	118	700	97	67	68	47	67	305	55	28	62	48	1662
(05:45 PM	121	665	65	102	78	55	54	296	69	41	89	63	1698
	Total	452	2654	269	306	273	216	247	1234	241	135	338	201	6566
	and Total	1368	7041	589	999	962	884	1044	8787	1185	787	1644	680	25970
ļ	Apprch %	15.2	78.3	6.5	35.1	33.8	31.1	9.5	79.8	10.8	25.3	52.8	21.9	
	Total %	5.3	27.1	2.3	3.8	3.7	3.4	4.0	33.8	4.6	3.0	6.3	2.6	
													•	


File Name: seprose7th Site Code: 00000000 Start Date: 3/7/2007

		•	reda Bivo	1	Rosecrans Ave Westbound					•	reda Blvd hbound		Rosecrans Ave Eastbound				
Start Time			Right	App. Total	Left	Thru	Right	App.	Left	Thru	Right App.		Left Thru		Right	Арр.	Int.
Peak Hour Fron	n 12:00 l	M to 0	5:45 PM		of 1			Total	L I			Total				Total	Total
Intersection	04:45 F	PM			ĺ				!			i				1	
Volume	454	2893	209	3556	314	197	156	667	222	1279	231	1732	157	386	171	714	6669
Percent	12.8	81.4	5.9		47.1	29.5	23.4		12.8	73.8	13.3		22.0	54.1	23.9		0000
05:30 Volume	81	749	63	893	92	36	35	163	54	397	67	518	46	95	44	185	1759
Peak Factor																!	0.948
High Int.	04:45 PM			05:15 PM			05:30 PM				05:15 PM				0.0 10		
Volume	146	716	40	902	91	69	46	206	54	397	67	518	44	111	55	210	
Peak Factor				0.986				0.809				0.836				0.850	

File Name: seprose7th Site Code: 00000000 Start Date: 3/7/2007

	:		eda Bivd nbound		Rosecrans Ave Westbound					•	eda Blvd bound		Rosecrans Ave Eastbound				ļ.
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Fron	n 07:00 /	AM to 1	1:45 AM	- Peak 1	of 1												
Intersection	07:45	٩M		-					1							1	
Volume	288	1141	77	1506	214	247	230	691	305	3212	329	3846	229	530	149	908	6951
Percent	19.1	75.8	5.1		31.0	35.7	33.3		7.9	83.5	8.6		25.2	58.4	16.4	ł	
07:45 Volume	82	291	26	399	51	67	71	189	82	788	92	962	60	135	49	244	1794
Peak Factor												ĺ				į	0.969
High Int.	07:45 AM		07:45 AM			08:15 AM				07:45 AM							
Volume	82	291	26	399	51	67	71	189	83	829	95	1007	60	135	49	244	
Peak Factor				0.944				0.914				0.955				0.930	

File Name : seprose7th Site Code : 00000000

Start Date : 3/7/2007

					Groups I	Printed- 1	 Unshifted 						
		oulveda Blv	/d	Ros	secrans Av	е	Se	pulveda Bh	/d	Ro			
		outhbound		W	estbound/	i	N	lorthbound	i	Ε			
Start Time	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Int. Total
Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
07:00 AM	31	191	13	40	60	41	43	791	51	39	82	10	1392
07:15 AM	48	232	21	47	59	50	75	812	60	58	107	21	1590
07:30 AM	59	257	28	51	52	47	60	843	57	67	100	26	1647
07:45 AM	82	291	26	51	67	71	82	788	92	60	135	49	1794
Total	220	971	88	189	238	209	260	3234	260	224	424	106	6423
08:00 AM	67	286	25	73	64	40	75	827	71 !	68	128	39	1763
08:15 AM	67	275	15	46	59	57	83	829	95	52	125	29	1732
08:30 AM	72	289	11	44	57	62	65	768	71	49	142	32	1662
08:45_AM	98	266	24	42	40	44	64	602	86	59	130	47	1502
Total	304	1116	75	205	220	203	287	3026	323	228	525	147	6659
04:00 PM	89	640	33	75	50	82	54	374	78	61	85	43	1664
04:15 PM	139	607	34	75	42	96	56	307	52	47	101	54	1610
04:30 PM	117	732	54	79	43	63 ¦	47	348	73	33	70	44	1703
04:45 PM	146	716	40	60	48	51	56	285	46	31	77	47	1603
Total	491	2695	161	289	183	292	213	1314	249	172	333	188	6580
05:00 PM	112	713	62	71	44	24	55	315	52	36	103	25	1612
05:15 PM	115	715	44	91	69	46	57	282	66	44	111	55	1695
05:30 PM	81	749	63	92	36	35	54	397	67	46	95	44	1759
05:45 PM	130	622	49	48	38	30	75	274	60	41	117	55	1539
Total	438	2799	218	302	187	135	241	1268	245	167	426	179	6605
Grand Total	1453	7581	542	985	828	839	1001	8842	1077	791	1708	620	26267
Apprch %	15.2	79.2	5.7	37.1	31.2	31.6	9.2	81.0	9.9	25.4	54.8	19.9	
Total %	5.5	28.9	2.1	3.7	3.2	3.2	3.8	33.7	4.1	3.0	6.5	2.4	