Ballentine Associates, P.A.

Fire Flow Analysis

For

Brookside at Fieldstone
Chatham County, North Carolina

(PIN: 9766-20-6324)

Prepared by:

Ballentine Associates, P.A.
Consulting Engineers 221 Providence Road Chapel Hill, NC 27514 (919) 929-0481

BA Project \# 113022.00

Project Overview:

Brookside at Fieldstone is a residential subdivision project including the extension of the existing Fieldstone Lane and water main to serve 13 new single family lots. The site is located to the east of the existing Fieldstone neighborhood, which is off of Mann’s Chapel Road.

The water main project will include an approximately 1,700 linear feet extension of the existing 8 -inch ductile iron water main extension, as shown on the attached Utility Plan prepared by Ballentine Associates. There will be four new 6 -inch fire hydrant services and thirteen domestic water meters; one for each new lot. The 8 -inch water main will terminate at the southern end of the new culdesac with a 2 " blow-off assembly as per Chatham County standards and specifications.

Hydrant Flow Test:

A hydrant flow test was performed by Chatham County Public Utilities \& Water Division personnel, utilizing two existing hydrants: the gauge hydrant near the entrance to the Fieldstone neighborhood, and the flow hydrant near the Fieldstone Lane culdesac. Refer to the attached hydrant flow test report and map for additional information.

Water Demands \& Fire Flow Requirements:

The cumulative peak domestic demand for the fully developed 13 lots has been calculated to be 200 gpm, irrigation peak demand has been estimated to be 120 gpm , and the minimum fire flow required for a fire hydrant is 500 gpm per Chatham County \& NCDEQ requirements. The total required flow for the new water system has been calculated to be 820 gpm . Refer to the attached calculations for additional information.

Analysis:

A spreadsheet based on the Hazen-Williams formula was used to calculate the head losses that will occur between the test flow hydrant location and the proposed hydrants on site. The spreadsheet accounts for pressure loss due to static losses and friction, and minor losses in the proposed piping. Separate scenarios were evaluated to determine the "worst case" calculation of pressure loss through the system from the test hydrant to each of the proposed new hydrants.

A total flow of 820 gpm (500 gpm fire flow +320 gpm domestic/irrigation) was assumed in all scenarios. Hydrant \#2 was determined to be the "worst case" scenario based on the pressure loss at the node (See attached Utility Plan for the Hydrant \#2 node location.) 820 gpm @ 51 psi was determined to be available at Hydrant \#2.

Results/Conclusions:

The attached calculations provided at each node (proposed new hydrants) confirm that peak domestic demand and required fire flow can be met for this project with the worst case scenario being at hydrant \#2 where 820 gpm will be available at 51 psi .

Appendix:

- Hydrant Flow Test Report \& Map (provided by Chatham County)
- Utility Plan (11"x17") showing proposed water system.
- Fire Flow Q20 Calculation
- Fire Flow Calculations
- System Performance Curve
- Equivalent Pipe Length Tables

Chatham County Public citifies \& Wo fer Division
 FIRE FLOW TEST DATA

CHATHAM COUNTY
964 East Street, Suite 205, Pittsboro, NC 27312
Phone: 919-542-8270 Fax: 919-542-8282

Project: Brookside at Fieldstone
Address:
Location of Hydrants :
Intersection of Manns Chapel Rd./Fieldstone Ln. (test hydrant), End of Fieldstone Ln. (flow hydrant)

The formula used to compute the discharge Q in ppm for these measurements is:

$$
\mathrm{Q}=29.83 \mathrm{~cd}^{2}(\mathrm{p})^{1 / 2}
$$

$\mathrm{c}=$ is the coefficient of discharge
$\mathrm{d}=$ is the diameter of the outlet in inches
$p=$ is the velocity pressure in psi

If stream straightners are being utilized, a " c " of 0.95 is suggested unless the coefficient of the tube is known.

Outlet square and projecting into barrel clef. 0.70

The formula which is generally used to compute the discharge at the specified residual pressure or for any desired pressure drop is:

$$
Q_{r}=Q_{f} \times \frac{H r^{0.54}}{H_{f}^{0.54}}
$$

$\mathrm{Q}_{\mathrm{r}}=$ is the flow available at desired pressure
$\mathrm{Q}_{\mathrm{f}}=$ is the flow during test
$\mathrm{H}_{\mathrm{r}}=$ is the pressure drop to desired residual pressure
$\mathrm{H}_{\mathrm{f}}=$ is the pressure drop during test

Fire Flow Q20 Calculation

Project:
Project Number:
Client
Date:

Brookside at Fieldstone
113022.00

Brookside at Fieldstone
11-Apr-2016

Consulting Engineers 221 Providence Road Chapel Hill, NC 27514 (919) 929-0481 fax 489-2803

Hydrant Flow Test Data: (See attached Hydrant Flow Test Report.)

Flow Hydrant Location: Fieldstone Lane Culdesac
Gauge Hydrant Location: Near Entrance to Fieldstone Subd.

Static Conditions

Static Pressure $=$	74.00 psi
To convert to feet of static head: $(\times 144 \mathrm{sqin} / \mathrm{sqft}) /(62.4 \mathrm{lb} / \mathrm{ft})$	
Static Head $(\mathrm{S})=$	170.77 ft
Static Flow $=$	0.00 gpm

Residual Conditions

Residual Pressure $=$	54.00 psi
To convert to feet of residual head: $(\times 144 \mathrm{sqin} / \mathrm{sqft}) /(62.4 \mathrm{lb} / \mathrm{ft})$	
Residual Head $(\mathrm{R})=$	124.62 ft
Residual Flow $(\mathrm{Qr})=$	839.00 gpm

Baseline Conditions

Baseline Pressure	$=$
Baseline Head $(\mathrm{R} 20)$	$=$
To convert to feet of baseline head: $(\times 144 \mathrm{sqin} / \mathrm{sqft}) /(62.4 \mathrm{lb} / \mathrm{ft})$	
Baseline Flow at $20 \mathrm{psi}(\mathrm{Q} 20)$	$=$
	To determine Q 20, solve for Hazen Williams Equation below.

Hazen Williams Equation
$\mathrm{Q} 20=\mathrm{Qr} x\left[\left((\mathrm{~S}-\mathrm{R} 20)^{\wedge} .54\right) /\left((\mathrm{S}-\mathrm{R})^{\wedge} .54\right)\right]$

Qr:	839.00 gpm
S:	170.77 ft
R20:	46.15 ft
R:	124.62 ft

Solving the above equation for Q20 using above data yields the following result.
Baseline Flow at $\mathbf{2 0}$ psi:

Project:
Brookside at Fieldstone
Proj. Number:
Client:
113022.00

Node:
Sheryl-Mar LLC.
Hydrant \#1

Consulting Engineers 221 Providence Road Chapel Hill, NC 27514
(919) 929-0481 fax 489-2803

Water System Data

Flow (gpm)	Pressure	
	(ft)	(psi)
0	170.9	74
839	124.7	54
1434.49	46.2	20

Static Pressure
Residual Pressure
Note: This is the calculated Q_{20} flow
MINIMUM FIRE FLOW at 20 psi
Per Chatham County/NCDEQ 500 gpm
FIRE FLOW REQUIREMENT: 500 gpm
DOMESTIC FLOW REQUIREMENT: 200 gpm IRRIGATION FLOW REQUIREMENT

120 gpm
approximately 15 gpm (75% of meter capacity) per lot $40 \mathrm{gpm} /$ meter (assuming 3 lots in use at a time)

TOTAL FLOW FOR CALCULATIONS: 820 gpm

Head Losses in Pipe

Static Headloss

$$
\text { Static Head }=\Delta \text { Elevation }
$$

Elevation of Pipe @ Test Flow Node (Ground Elev minus 3 ft) = Nozzle Elevation @ New Fire Hydrant = 552 ft NGVD

Static Head $\left(h_{s}\right)=$
5 ft

PIPE SIZE 8-in

Fitting Type	Eq Len	Qty	Total
Tee-branch, flanged	20	1	20
45° Elbow, flanged	6.3	2	12.6
Tee-through, flanged	3.9	0	0
Gate Valve, flanged	2.7	1	2.7
	SUM $\mathbf{~}$	$\mathbf{3 5 . 3}$	

Project:
Brookside at Fieldstone
Proj. Number:
Client:
Node:
113022.00

Sheryl-Mar LLC.
Hydrant \#2

Consulting Engineers 221 Providence Road Chapel Hill, NC 27514
(919) 929-0481 fax 489-2803

Water System Data

Flow (gpm)	Pressure	
	(ft)	(psi)
0	170.9	74
839	124.7	54
1434.49	46.2	20

Static Pressure
Residual Pressure
Note: This is the calculated Q_{20} flow
MINIMUM FIRE FLOW at 20 psi
Per Chatham County/NCDEQ 500 gpm
FIRE FLOW REQUIREMENT: 500 gpm
DOMESTIC FLOW REQUIREMENT: 200 gpm IRRIGATION FLOW REQUIREMENT \qquad
approximately 15 gpm (75% of meter capacity) per lot 120 gpm $40 \mathrm{gpm} /$ meter (assuming 3 lots in use at a time)

TOTAL FLOW FOR CALCULATIONS: 820 gpm

Head Losses in Pipe

Static Headloss

$$
\text { Static Head }=\Delta \text { Elevation }
$$

Elevation of Pipe @ Flow Test Node (Ground Elev minus 3 ft) =
. 547 ft NGVD Nozzle Elevation @ New Fire Hydrant = 549 ft NGVD

Static Head $\left(h_{s}\right)=\quad 2 \mathrm{ft}$

Minor Losses (Equivalent Lengths)							
PIPE SIZE 6-in				PIPE SIZE		16-in	
Fitting Type	Eq Len	Qty	Total	Fitting Type	Eq Len	Qty	Total
Tee-branch, flanged	15	0	0	Tee-branch, flanged	39	0	0
45° Elbow, flanged	4.5	0	0	45° Elbow, flanged	13	0	0
Tee-through, flanged	3.1	0	0	Tee-through, flanged	6.5	0	0
Gate Valve, flanged	2.6	2	5.2	Gate Valve, flanged	3	0	0
		SUM =	5			SUM =	0

PIPE SIZE 8-in

Fitting Type	Eq Len	Qty	Total
Tee-branch, flanged	20	1	20
45° Elbow, flanged	6.3	4	25.2
Tee-through, flanged	3.9	1	3.9
Gate Valve, flanged	2.7	2	5.4
		SUM $=$	$\mathbf{5 4 . 5}$

Project:
Brookside at Fieldstone
Proj. Number:
Client:
113022.00

Node:
Sheryl-Mar LLC.
Hydrant \#3

Consulting Engineers 221 Providence Road Chapel Hill, NC 27514
(919) 929-0481 fax 489-2803

Water System Data

Flow (gpm)	Pressure	
	(ft)	(psi)
0	170.9	74
839	124.7	54
1434.49	46.2	20

Static Pressure
Residual Pressure
Note: This is the calculated Q_{20} flow
MINIMUM FIRE FLOW at 20 psi
Per Chatham County/NCDEQ 500 gpm
FIRE FLOW REQUIREMENT: 500 gpm
DOMESTIC FLOW REQUIREMENT: 200 gpm IRRIGATION FLOW REQUIREMENT

120 gpm
approximately 15 gpm (75% of meter capacity) per lot $40 \mathrm{gpm} /$ meter (assuming 3 lots in use at a time)

TOTAL FLOW FOR CALCULATIONS: 820 gpm

Head Losses in Pipe

Static Headloss

$$
\text { Static Head }=\Delta \text { Elevation }
$$

Elevation of Pipe @ Flow Test Node (Ground Elev minus 3 ft) = Nozzle Elevation @ New Fire Hydrant = 539 ft NGVD

Static Head $\left(\mathrm{h}_{\mathrm{s}}\right)=\quad-8 \mathrm{ft}$

547 ft NGVD

Minor Losses (Equivalent Lengths)

PIPE SIZE 6-in				PIPE SIZE		16-in	
Fitting Type	Eq Len	Qty	Total	Fitting Type	Eq Len	Qty	Total
Tee-branch, flanged	15	0	0	Tee-branch, flanged	39	0	0
45° Elbow, flanged	4.5	0	0	45° Elbow, flanged	13	0	0
Tee-through, flanged	3.1	0	0	Tee-through, flanged	6.5	0	0
Gate Valve, flanged	2.6	2	5.2	Gate Valve, flanged	3	0	0
		SUM =	5			SUM =	0

PIPE SIZE 8-in

Fitting Type	Eq Len	Qty	Total			
Tee-branch, flanged	20	1	20			
45° Elbow, flanged	6.3	6	37.8			
Tee-through, flanged	3.9	2	7.8			
Gate Valve, flanged	2.7	3	8.1			
					SUM $\mathbf{~}$	$\mathbf{7 3 . 7}$

Project:
Brookside at Fieldstone
Proj. Number:
Client:
113022.00

Node:
Sheryl-Mar LLC.
Hydrant \#3

Consulting Engineers 221 Providence Road Chapel Hill, NC 27514
(919) 929-0481 fax 489-2803

Water System Data

Flow (gpm)	Pressure	
	(ft)	(psi)
0	170.9	74
839	124.7	54
1434.49	46.2	20

Static Pressure
Residual Pressure
Note: This is the calculated Q_{20} flow
MINIMUM FIRE FLOW at 20 psi
Per Chatham County/NCDEQ 500 gpm
FIRE FLOW REQUIREMENT: 500 gpm
DOMESTIC FLOW REQUIREMENT: 200 gpm IRRIGATION FLOW REQUIREMENT

120 gpm
approximately 15 gpm (75% of meter capacity) per lot $40 \mathrm{gpm} /$ meter (assuming 3 lots in use at a time)

TOTAL FLOW FOR CALCULATIONS: 820 gpm

Head Losses in Pipe

Static Headloss

Static Head $=\triangle$ Elevation							
Elevation of Pipe @ Flow Test Node (Ground Elev minus 3 ft$)=$ 547 ft NGVD Nozzle Elevation @ New Fire Hydrant $=$ 535 ft NGVD							
Static Head (h_{S}) $=\quad-12 \mathrm{ft}$							
Minor Losses (Equivalent Lengths)							
PIPE SIZE 6-in				PIPE SIZE		16-in	
Fitting Type	Eq Len	Qty	Total	Fitting Type	Eq Len	Qty	Total
Tee-branch, flanged	15	0	0	Tee-branch, flanged	39	0	0
45° Elbow, flanged	4.5	0	0	45° Elbow, flanged	13	0	0
Tee-through, flanged	3.1	0	0	Tee-through, flanged	6.5	0	0
Gate Valve, flanged	2.6	2	5.2	Gate Valve, flanged	3	0	0
		SUM =	5			JM =	0

PIPE SIZE 8-in

Fitting Type	Eq Len	Qty	Total
Tee-branch, flanged	20	1	20
45° Elbow, flanged	6.3	8	50.4
Tee-through, flanged	3.9	3	11.7
Gate Valve, flanged	2.7	4	10.8
	SUM $=$	$\mathbf{9 2 . 9}$	

System Performance Curve

Equivalent Length of STEEL Straight Pipe for Various Fittings in feet, turbulent flow only														
	Pipe Size, Inches													
FITTINGS	1	2	3	4	5	6	8	10	12	14	16	18	20	24
90° Elbow, screwed	5.2	8.5	11	13										
90° Elbow, flanged	1.6	3.1	4.4	5.9	7.3	8.9	12	14	17	18	21	23	25	30
45° Elbow, screwed	1.3	2.7	4.0	5.5										
45° Elbow, flanged	0.8	1.7	2.6	3.5	4.5	5.6	7.7	9	11	13	15	16	18	22
Tee-branch, screwed	6.6	12.0	17.0	21.0										
Tee-branch, flanged	3.3	6.6	9.4	12	15	18	24	30	34	37	43	47	52	62
Tee-through, screwed	3.2	7.7	12	17										
Tee-through, flanged	1.0	1.8	2.2	2.8	3.3	3.8	4.7	5.2	6.0	6.4	7.2	7.6	8.2	9.6
Coupling, screwed	0.3	0.5	0.5	0.7										
Globe Valve, screwed	29	54	79	110										
Globe Valve, flanged	45	70	94	120	150	190	260	310	390					
Swing Check Valve, screwed	11	19	27	38										
Swing Check Valve, flanged	7.2	17	27	38	50	63	90	120	140					
Gate Valve, screwed	0.8	1.5	1.9	2.5										
Gate Valve, flanged		2.6	2.8	2.9	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
Bell Inlet, Steel	0.2	0.4	0.7	1.0	1.3	1.6	2.3	2.9	3.5	4.0	4.7	5.3	6.1	7.6
Square Inlet, Steel	1.3	3.1	6.7	9.5	13	16	23	29	35	40	47	53	61	76
Re-entrant, Steel	3.6	8.5	13	19	25	32	45	58	70	80	95	110	120	150

Civil Engineering Reference Manual, 8th Edition, 2001 Appendix 17.D

Equivalent Length of CAST IRON Straight Pipe for Various Fittings in feet, turbulent flow only														
	Pipe Size, Inches													
FITTINGS	1	2	3	4	5	6	8	10	12	14	16	18	20	24
90° Elbow, screwed			9	11										
90° Elbow, flanged			3.6	4.8		7.2	10	12	15	17	19	22	24	28
45° Elbow, screwed			3.3	4.5										
45° Elbow, flanged			2.1	2.9		4.5	6.3	8	10	12	13	15	17	20
Tee-branch, screwed			14	17										
Tee-branch, flanged			7.7	10		15	20	25	30	35	39	44	49	57
Tee-through, screwed			10	14										
Tee-through, flanged			1.9	2.2		3.1	3.9	4.6	5.2	5.9	6.5	7.2	7.7	8.8
Coupling, screwed			0.44	0.52										
Globe Valve, screwed			65	86										
Globe Valve, flanged			77	99		150	210	270	330					
Swing Check Valve, screwed			22	31										
Swing Check Valve, flanged			22	31		52	74	98	120					
Gate Valve, screwed			1.6	2.0										
Gate Valve, flanged	0.0		2.3	2.4		2.6	2.7	2.8	2.9	2.9	3.0	3.0	3.0	3.0
Bell Inlet, Steel	2.0		0.55	0.77		1.3	1.9	2.4	3.0	3.6	4.3	5.0	5.7	7.0
Square Inlet, Steel			5.5	7.7		13	19	24	30	36	43	50	57	70
Re-entrant, Steel			11	15		26	37	49	61	73	86	100	110	140

Civil Engineering Reference Manual, 8th Edition, $2001 \quad$ Appendix 17.D

Equivalent Length of PVC Straight Pipe for Various Fittings in feet, turbulent flow only														
24	370													
FITTINGS	1	2	3	4	5	6	8	10	12	14	16	18	20	24
90° Elbow	2.6	5.2	7.7	10.1	12.6	15.2	20.0	25.1	29.8	32.8	37.5	42.2	47.0	56.6
45° Elbow	1.4	2.8	4.1	5.4	6.7	8.1	10.6	13.4	15.9	17.5	20.0	22.5	25.1	30.2
Tee-branch flow	5.3	10.3	15.3	20.1	25.2	30.3	39.9	50.1	59.7	65.6	75.0	84.4	94.1	113.0
Tee-through flow	1.8	3.5	5.1	6.7	8.4	10.1	13.3	16.7	19.9	21.8	25.0	28.1	31.4	37.7
Globe Valve, full open	29.7	58.6	86.9	114	143	172	226	284	338	372	425	478	533	641
Swing Check Valve, full open	8.7	17.2	25.5	33.6	42.1	50.5	33.3	41.8	49.7	54.7	62.5	70.3	78.4	94.3
Gate Valve, full open	0.7	1.4	2.0	2.7	3.4	4.0	5.3	6.7	8.0	8.8	10.0	16.9	12.5	15.1

Handbook of PVC Pipe, 4th Edition, 2001
Table 9.1

