Revised Traffic Impact Analysis

Lystra Gardens

Chatham County, NC

Prepared for:
Landmark Homes of Pinehurst

April 2007

LDM-06000

Revised Traffic Impact Analysis

Lystra Gardens

Chatham County, NC

Prepared for:
Landmark Homes of Pinehurst

April 2007

LDM-06000

Table of Contents

Sect.	Title	Page No.										
1.0	Exec	Executive Summary										
2.0	Proje	ect Background2										
3.0	Inventory											
	3.1	Study Area										
	3.2	Existing Conditions										
4.0	Traff	ic Generation6										
	4.1	Approved Development Trip Generation										
5.0	Traff	ic Distribution										
6.0	Proje	ected Traffic Volumes10										
	6.1	Existing Traffic										
	6.2	Historical Growth Traffic										
	6.3	Approved Development Traffic										
7.0	Site A	Access and Traffic Assignment15										
8.0	Traff	fic Analysis18										
	8.1	US 15-501 – Lystra Road										
	8.2	Lystra Road – Site Drive										
	8.3	Lystra Road – Jack Bennett Road21										
Sumn	nary of	f Conclusions & Recommendations23										
Appe	ndix											
Refer	ences											

List of Figures

Fig.	Title	Page No.
1.	General Site Location	4
2.	Existing Roadway Laneage	5
3.	Site Traffic Distribution	9
4.	Existing Traffic Volumes	12
5.	Approved Development Traffic Volumes	13
6.	Future No-Build Traffic Volumes	14
7.	Site Traffic Volumes	16
8.	Future Build Traffic Volumes	17
9.	Recommended Laneage	23
	List of Tables	
Table	e Title	Page No.
1.	Site Traffic Generation	6
2.	Site Traffic Generation – PM School Peak	6
3.	Pending Development Traffic Generation	7
4.	Intersection Level of Service: US 15-501 – Lystra Road	19
5.	Intersection Level of Service: Lystra Road –Site Drive	20
6.	Intersection Level of Service: Lystra Road – Jack Bennett Road	21

1.0 Executive Summary

The proposed Lystra Gardens Subdivision is located along the southern side of Lystra Road approximately 1 mile east of US 15-501, southeast of Chapel Hill, North Carolina. Currently only 69 residential single-family units are currently being proposed. One access point is proposed onto Lystra Road. Build out of the development is expected in 2009.

This study was performed to determine the future traffic impacts of the proposed development on the surrounding street network. Analyses were conducted during a.m. and p.m. peak hours as well as the afternoon school peak. Projected traffic volumes for intersections within the study area were analyzed under three scenarios: Existing, Future No Build, and Future Build.

This analysis includes several large approved development projects including: Williams Corner, Booth Mountain and Briar Chapel. While there will definitely be interaction of trips (trip capture) between these approved developments, no such adjustment was applied in the analysis. In addition to the growth related to specific approved development projects, existing traffic volumes were grown at a 3% annual rate. Applying both an annual growth rate and approved development traffic growth will likely result in a double counting of background traffic growth. As a result, future traffic projects are likely to be overestimated, thereby resulting in a conservative analysis.

First, by specifically including several large approved developments without accounting for interaction between any of these land uses, cumulative traffic impacts are overestimated. Second, in similar cases where traffic from several large approved projects are specifically included in the analysis, projected traffic increases resulting from additional "background" growth are often reduced or eliminated. This is based on the assumption that the approved projects adequately reflect historical background growth through the proposed build-out date. However, no such reductions were applied in this analysis. As a result, the analysis likely overestimates traffic impacts in both the Future Build and Future No-Build scenarios.

Based on the analysis, and assuming approved development traffic and their committed improvements, no additional roadway improvements are necessary to accommodate projected site traffic demands. Site traffic has a minimal impact on the adjacent roadway and nearby intersections.

2.0 Project Background

The proposed Lystra Gardens Subdivision is located along the southern side of Lystra Road approximately 1 mile east of US 15-501, southeast of Chapel Hill, North Carolina. Currently only 69 residential single-family units are currently being proposed. One access point is proposed onto Lystra Road. Build out of the development is expected in 2009.

The John R. McAdams Company, Inc. was retained to determine potential traffic impacts of this proposed project. This report presents trip generation, trip distribution, analysis and recommendations for improvements to meet anticipated traffic demands.

This analysis was performed using Synchro Professional Software Version 5.0.

3.0 Inventory

3.1 Study Area

The study area for this traffic impact analysis has been determined based on preliminary discussions with Town staff. The following intersections are included in the study area.

- US 15-501 Lystra Road
- Lystra Road Site Drive
- Lystra Road Jack Bennett Road

3.2 Existing Conditions

Streets within the study area include US 15-501, Lystra Road, and Jack Bennett Road. Existing traffic volumes along the street network are relatively low during peak hours, but are projected to increase substantially in the future due to multiple approved developments. Current roadway laneage is shown on Figure 2.

Located west of the site, US 15-501 is a five-lane, north/south arterial with posted speed limits of 45 mph in the vicinity of the site, and a 2003 average daily traffic (ADT) of 20,000 vehicles per day (vpd). US 15-501 was recently widened to a multi-lane facility from a point north of Pittsboro to Chapel Hill.

Lystra Road is generally a two-lane east/west minor thoroughfare with a posted 45 mph speed limit and a 2005 ADT of 3,000 vpd in the site vicinity. Lystra Road forms a signalized T-intersection with US 15-501 and an unsignalized T-intersection with Jack Bennett Road. The subject development proposes one full-movement site drive onto Lystra Road.

Jack Bennett Road is generally a two-lane east/west minor thoroughfare with a posted 45 mph speed limit and an estimated 2007 ADT of 4,000 vpd near the intersection with Lystra Road.

McADAM:

FIGURE:

1

SITE LOCATION MAP

LYSTRA GARDENS TRAFFIC IMPACT ANALYSIS CHATHAM COUNTY, NC

THE JOHN R. McADAMS COMPANY, INC.

ENGINEERS/PLANNERS/SURVEYORS

RESEARCH TRIANGLE PARK, NC P.O. BOX 14005 ZIP 27709-4005 (919) 361-5000

FIGURE:

2

EXISTING LANEAGE

LYSTRA GARDENS
TRAFFIC IMPACT ANALYSIS
CHATHAM COUNTY, NC

4.0 Trip Generation

The gross estimated traffic generation for the proposed development was calculated based on the proposed site plan, and using the methodology, rates and equations in the *Institute of Transportation Engineers (ITE) - Trip Generation*, 7th Edition, 2003.

Table 1 summarizes the proposed site trip generation during the AM and PM peak hours.

Table 1 ITE Traffic Generation – Lystra Gardens (Average Weekday Traffic)										
Land Use Code	Land Use	Average	AM]	Peak	PM Peak					
	Density	Daily Traffic	Enter	Exit	Enter	Exit				
210	Single Family Detached (69 Units)	739	14	43	48	28				

The ITE Trip Generation Manual does not provide data regarding the generation of residential site traffic during a "School Peak Hour". Based on conversations with North Chatham School staff regarding hours of operation, the typical AM peak hour also captures the AM School Peak Hour. To determine the site traffic generation during the PM School Peak, 12-hour turning movement counts for other residential projects were analyzed to determine the proportion of traffic entering and leaving the project during the hours of 2:00 – 4:00 PM compared to the total 12-hour count. This proportion (7.9%) was applied to the ITE daily trip generation for single-family dwelling units to determine a trip generation rate per unit. Because the School Peak Hour volumes were compared to the 12-hour volume total as opposed to a 24-hour volume total, the estimated trip generation is likely higher than will actually be experienced, thereby presenting a conservative analysis. Details regarding this methodology are included in the Appendix.

Table 2 summarizes the proposed site trip generation during the PM school peak hour.

Table 2 ITE Traffic Generation – Lystra Gardens (Average Weekday Traffic)									
Land Use	Land Use	Average Daily	PM School Peak						
Code	Density	Traffic	Enter	Exit					
210	Single Family Detached (69 Units)	739	32	27					

4.1 Approved Development Trip Generation

Based on conversations with Town staff, the approved, yet un-built, developments in the site vicinity include Williams Corner, Booth Mountain and Briar Chapel. These projects are assumed as approved developments and are discussed further in Section 6.3. Gross trip generation was calculated based on the methodology, rates and equations in the *Institute of Transportation Engineers (ITE) - Trip Generation*, 7th Edition, 2003.

Table 3 summarizes the total approved development gross trip generation. For general purposes, no adjustments are shown for internal capture or passby trips.

Table 3 ITE Traffic Generation – Approved Developments (Average Weekday Gross Traffic)										
A	Peak	PM Peak								
Approved Development	Daily Traffic	Enter	Exit	Enter	Exit					
Williams Corner	17,717	701	291	656	1,044					
Booth Mountain	1,786	37	102	115	67					
Briar Chapel	39,101	1,576	1,847	1,985	1,771					
Total Gross Approved Development Trips	58,604	2,314	2,240	2,756	2,882					

5.0 Trip Distribution

The primary site traffic distribution was determined based on a review of site trip origins and destinations, future approved developments and existing peak hour traffic volumes in the site vicinity. Given the site location, a majority of site traffic is likely to access the site via US 15-501 towards the Town of Chapel Hill. Therefore the site distribution is weighted towards the north. Primary site traffic volumes were distributed as summarized below:

	Overall
To/From the north via US 15-501	48%
To/From the south via US 15-501	12%
To/From the south via Jack Bennett	14%
To/From the east via Lystra Road	26%
Total	100%

A more detailed distribution of site traffic is reflected on Figure 3.

LEGEND

- EXISTING SIGNAL

XX% - PRIMARY TRIP PERCENTAGE: IN(OUT)

FIGURE:

3

SITE TRAFFIC DISTRIBUTION LYSTRA GARDENS
TRAFFIC IMPACT ANALYSIS
CHATHAM COUNTY, NC

6.0 Projected Traffic Volumes

6.1 Existing Traffic

Traffic Survey Services, Inc. collected turning movement counts at the intersection of US 15-501 – Lystra Road and Jack Bennett Road – Lystra Road on April 17th, 2007. A follow up traffic count was collected at the Jack Bennett – Lystra Road intersection on April 19th, 2007 by the John R. McAdams Company, Incorporated. These counts are included in the appendix. Figure 4 reflects these existing peak hour traffic volumes for intersections within the study area.

6.2 Historical Growth Traffic

Historical growth (background growth) traffic is the increase in traffic volumes due to non-specific growth throughout the area. Based on standard NCDOT practice, a 3.0% annual growth rate was applied to existing traffic volumes through the build out year 2009.

6.3 Approved Development Traffic

Approved development traffic is the traffic that will be generated by currently approved developments that are not yet constructed or occupied. Based on conversations with Town staff, there are three such developments to be specifically included in this analysis: Williams Corner, Booth Mountain and Briar Chapel.

The pending Williams Corner mixed-use development is located in the northeast quadrant of the US 15-501 – Lystra Road intersection. This development proposes 40 townhomes, a day care center, a specialty supermarket, a pharmacy with drive-through window, a drive-in bank, 50,500 square feet (s.f.) of specialty retail, 50,500 s.f. of office spaces, 166,000 s.f. of medical office space, and 60,000 s.f. of flex space in the projected 2010 build out year. Williams Corner site traffic volumes were distributed onto the network based on the traffic impact analysis prepared by Kimley-Horn and Associates, Inc. dated May 2005. Per the traffic study, dual westbound left turn lanes at the US 15-501 – Lystra Road intersection are recommended as part of this development and were therefore included in the Future No-Build and Future Build scenarios as a committed improvement. While this project has not yet been approved, staff asked that the traffic impacts be specifically reflected in this analysis.

The Briar Chapel mixed-use development is located west of US 15-501 between Mann's Chapel Road and Andrews Store Road in Chatham County, NC. The project proposes approximately 1,880 single-family units, 515 multi-family units, 252,000 s.f. of retail,

270,000 s.f. of office, two schools and a county park with a projected 2014 build out year. This study assumes 60% of the Briar Chapel will be constructed by the year 2011. Therefore, 60% of the trip generation potential of the development was assigned to the intersections in the study area based on the Briar Chapel TIA prepared by Kimley-Horn and Associates, Inc. in June 2004.

The Booth Mountain residential development will be located east of US 15-501, south of south of Lystra Road and north of Jack Bennett Road. This development proposes 180 single-family units divided into three separate sections. Two sections, consisting of 39 and 53 units, will only have access onto Jack Bennett Road, while the third section, 88 units, will only have access onto Lystra Road. Build out of the development is expected in 2011. Booth Mountain site traffic volumes were distributed on the network based on the traffic impact analysis prepared by Ramey Kemp and Associates, Inc. dated August 2004.

Where necessary, approved development traffic volumes were distributed onto the network based on existing and projected traffic volumes. Approved development traffic volumes are indicated on Figure 6. As directed by staff, Future No-Build traffic volumes were determined by adding both approved development traffic and historical growth traffic to existing traffic volumes. For two reasons this approach is very conservative and likely overestimates future traffic volumes. First, by specifically including several large approved developments without accounting for interaction between any of these land uses, cumulative traffic impacts are overestimated. Second, in similar cases where traffic from several large approved projects are specifically included in the analysis, projected traffic increases resulting from additional "background" growth are often reduced or eliminated. This is based on the assumption that the approved projects adequately reflect historical background growth through the proposed build-out date. However, no such reductions were applied in this analysis. As a result, the analysis likely overestimates traffic impacts in both the Future Build and Future No-Build scenarios. Also, due to a lack of data, approved development traffic volumes during the Afternoon School Peak were assumed to equal to those during the PM peak hour. These approved development volumes will likely be significantly lower during the Afternoon School Peak. Therefore, a more conservative analysis is presented.

These Future No-Build volumes are indicated on Figure 7. Roadway improvements associated with the Williams Corner development are included in the Future No-Build and Future Build scenarios.

LEGEND

EXISTING SIGNAL

XX(XX)[XX] - PEAK HOUR VOLUMES: AM(PM)[SCHOOL PM]

FIGURE:

4

EXISTING TRAFFIC VOLUMES LYSTRA GARDENS
TRAFFIC IMPACT ANALYSIS
CHATHAM COUNTY, NC

FIGURE:

5

APPROVED DEVELOPMENT TRAFFIC VOLUMES LYSTRA GARDENS
TRAFFIC IMPACT ANALYSIS
CHATHAM COUNTY, NC

FIGURE:

6

FUTURE NO-BUILD TRAFFIC VOLUMES LYSTRA GARDENS
TRAFFIC IMPACT ANALYSIS
CHATHAM COUNTY, NC

7.0 Site Access and Traffic Assignment

The proposed site will operate with one full movement drive onto Lystra Road. Site traffic was distributed and assigned onto the street network based on the distributions described in Section 5.0. Site traffic volumes are indicated on Figure 5. Site generated traffic volumes were added to Future No-Build volumes to obtain anticipated Future Build volumes. Future Build traffic volumes are indicated on Figure 7.

LEGEND

EXISTING SIGNAL

XX(XX)[XX] - PEAK HOUR VOLUMES: AM(PM)[SCHOOL PM]

FIGURE:

7

SITE TRAFFIC VOLUMES LYSTRA GARDENS
TRAFFIC IMPACT ANALYSIS
CHATHAM COUNTY, NC

LEGEND

EXISTING SIGNAL

XX(XX)[XX] - PEAK HOUR VOLUMES: AM(PM)[SCHOOL PM]

FIGURE:

8

FUTURE BUILD-OUT TRAFFIC VOLUMES LYSTRA GARDENS
TRAFFIC IMPACT ANALYSIS
CHATHAM COUNTY, NC

8.0 Traffic Analysis

The *Highway Capacity Manual 2000* describes capacity as "the maximum number of vehicles that can pass a given point during a specific period under given roadway, traffic and control conditions". Capacity is further defined at different levels of service to qualitatively measure the operational characteristics of the traffic stream. The *Highway Capacity Manual* defines six levels of service, LOS A through LOS F, with LOS A indicating the shortest average delays and LOS F indicating the longest average delays. The tables below relate average intersection control delay to level of service for both signalized and unsignalized intersections.

LOS Criteria For Signalized Intersections							
LOS	Control Delay (sec./veh.)						
A	0 – 10						
В	>10 - 20						
С	>20 – 35						
D	>35 – 55						
Е	>55 - 80						
F	>80						

LOS Criteria For Unsignalized Intersections (2-Way Stop)								
LOS Control Delay (sec./veh.)								
A	0 – 10							
В	>10 – 15							
C	>15 – 25							
D	>25 – 35							
Е	>35 - 50							
F	>50							

Capacity analyses for a.m. and p.m. peak hours were conducted for each of the following scenarios:

- Existing (2007)
- Future No Build (2009)
- Future Build (2009)

8.1 US 15-501 – Lystra Road Intersection

This intersection has recently signalized as part of NCDOT's TIP Project R-942, which improved US 15-501 to a four-land, median-divided facility. With these improvements, this intersection currently operates at level of service (LOS) A during peak hours. Under the Future No-Build scenario with the addition of background growth traffic, approved development traffic and recommended westbound dual left turn lanes by the Williams Corner development, the intersection is projected to operate at LOS C. This decline in level of service is largely due to the amount of approved development traffic volumes in the site vicinity. Under the Future Build scenario with site traffic volumes, LOS C remains with minimal increase in overall intersection delay, as noted in the table below. Therefore, no improvements are necessary to address site-generated traffic.

Table 4 summarizes the peak hour levels of service.

Table 4 Level of Service Comparison US 15-501 – Lystra Road Intersection											
Scenario AM Peak LOS PM Peak LOS PM School Peak (Delay in Seconds) (Delay in Seconds) (Delay in Seconds)											
Existing	A (8.0)	A (7.9)	A (6.6)								
Future No-Build	B (15.1)	C (20.8)	B (18.8)								
Future Build	B (15.9)	C (21.8)	B (18.9)								

8.2 Lystra Road – Site Drive Intersection

In the Future Build scenario, the proposed Site Drive will form an unsignalized T-intersection with Lystra Road. This intersection is expected to operate at LOS C during the peak hour under future traffic demands. Therefore, no improvements are necessary to address site-generated traffic.

Table 5 summarizes the peak hour levels of service.

Table 5 Level of Service Comparison Lystra Road – Eastern Site Drive Intersection										
Scenario	AM Peak LOS (Delay in Seconds)	PM Peak LOS (Delay in Seconds)	PM School Peak LOS (Delay in Seconds)							
Future Build	C (18.2)	B (13.8)	B (13.2)							

*Note: HCS2000 methodology does not report an overall level of service for unsignalized intersections. The level of service and delay for the worst approach are reported above.

8.3 Lystra Road – Jack Bennett Road Intersection

This existing unsignalized intersection currently functions with the side street approach operating at level of service (LOS) D during the AM peak. Under the Future No-Build scenario, with approved development and background growth traffic, LOS F is expected on the Jack Bennett Road approach. In the Future Build scenario with build-out of Lystra Gardens Subdivision, the side street LOS F remains with minor increases in queues and delay. The Lystra Gardens Subdivision site traffic volumes are projected to constitute only 2.4% of total intersecting volume during the AM peak hour. It should also be noted that this intersection is located almost 1.5 miles from the site. As made evident by the Future No-Build analysis, this poor side street level of service is created by projected approved development impacts and is unrelated to the proposed Lystra Gardens Subdivision. Therefore, no improvements are necessary to address site-generated traffic. This intersection should continue to be monitored for future geometric improvements. Based on the analysis there exist no rational nexus between site traffic impact and the need for roadway improvements at this intersection.

Table 6 summarizes the peak hour levels of service.

Table 6 Level of Service Comparison Lystra Road – Jack Bennett Road Intersection											
Scenario AM Peak LOS PM Peak LOS PM School Peak LOS (Delay in Seconds) (Delay in Seconds) (Delay in Seconds)											
Existing	D (26.8)	B (11.7)	B (11.4)								
Future No-Build	F (109.4)	C (20.0)	C (16.7)								
Future Build	F (123.3)	C (22.4)	C (17.4)								

*Note: HCS2000 methodology does not report an overall level of service for unsignalized intersections. The level of service and delay for the worst approach are reported above.

9.0 Summary of Conclusions and Recommendations

Traffic generated by the proposed Lystra Gardens Subdivision will be quite low, creating minimal increases in delay at intersections within the study area. Site traffic volumes will not account for a significant portion of total intersection volumes, nor will they have a substantial impact on future intersection operations. With the addition of Williams Corner committed roadway improvements, no additional improvements are necessary at the US 15-501 – Lystra Road intersection. Also, because of the limited site traffic impact at the Lystra Road – Jack Bennett intersection and the fact that this intersection is located greater than 2.5 miles from the site drive, no improvements are recommended to address site traffic impact.

Therefore, based on the analysis, no improvements are recommended to accommodate site-generated traffic.

LEGEND

- EXISTING SIGNAL

ightarrow - EXISTING LANE

→ PROPOSED LANEAGE

⇒ - COMMITTED LANE / BY OTHERS

POSTED SPEED LIMIT

FIGURE:

9

PROPOSED LANEAGE

LYSTRA GARDENS
TRAFFIC IMPACT ANALYSIS
CHATHAM COUNTY, NC

Appendix

Traffic Counts,
Trip Generation
&
Trip Summary

US 15-501 @ Lyster Road

Date:4/17/07 Counter:JC Weather: Clear File Name: US15-5~1 Site Code: 00270261

Start Date : 4/17/2007

Page No : 1

Groups Printed- Primary

		East E	Bound			Lyste West I	r Rd.	7 111100	1- FIIIIai	US 1	5-501 Bound				5-501 Bound		
Start Time	Left	Thru	Right	Peds	Left	Thru	Right	Bus	Left	Thru	Right	Bus	Left	Thru	Right	Bus	Int. Total
07:00	0	0	0	0	8	0	9	0	1	170	6	1	28	59	0	1	283
07:15	0	0	0	0	7	0	21	0	1	249	3	1	28	71	0	1	382
07:30	0	0	0	0	19	0	29	0	2	248	8	0	34	89	0	1	430
07:45	0	0	0	0	11	0	28	0	0	222	13	0	36	109	0	0	419
Total	0	0	0	0	45	0	87	0	4	889	30	2	126	328	0	3	1514
08:00	0	0	0	0	6	0	21	0	1	224	5	0	37	91	0	0	385
08:15	0	0	0	0	11	0	37	0	0	240	6	0	36	111	0	0	441
08:30	0	0	0	0	9	0	36	0	1	191	6	0	29	124	0	0	396
08:45	0	0	0	0	7	0	34	0	2	196	6	0	32	87	0	0	364
Total	0	0	0	0	33	0	128	0	4	851	23	0	134	413	0	0	1586
Break																	
14:00	0	0	0	0	11	1	14	0	0	50	0	0	17	44	0	0	137
14:15	0	0	0	0	14	0	24	ō	3	92	21	0	35	123	0	0	312
14:30	0	0	0	0	14	Ö	19	1	2	101	21	1	29	131	2	0	321
14:45	0	0	0	0	14	0	20	0	1	107	7	1	27	141	0	0	318
Total	0	0	0	0	53	1	77	1	6	350	49	2	108	439	2	0	1088
15:00	0	0	0	0	24	0	39	2	2	112	2	0	32	113	0	1	327
15:15	0	0	0	0	12	0	23	0	4	102	13	1	42	162	0	1	360
15:30	0	0	0	0	18	0	25	0	3	124	11	1	41	146	0	1	370
15:45	0	0	0	0	24	0	29	0	1	111	7	0	44	181	0	1	398
Total	0	0	0	0	78	0	116	2	10	449	33	2	159	602	0	4	1455
16:00	0	0	0	0	29	0	23	2	5	131	9	0	30	180	0	1	410
16:15	0	0	0	0	19	1	18	1	4	98	1	0	45	193	0	2	382
16:30	0	0	0	0	27	0	30	0	1	92	16	1	26	179	0	0	372
16:45	0	0	0	0	25	0	39	0	4	123	4	0	53	243	0	0	491
Total	0	0	0	0	100	1	110	3	14	444	30	1	154	795	0	3	1655
17:00	0	0	0	0	26	0	35	0	4	124	3	0	42	201	0	0	435
17:15	0	0	0	0	24	2	32	0	6	131	7	0	57	248	0	0	507
17:30	0	0	0	0	28	0	39	0	1	160	5	0	36	259	0	0	528
17:45	0	0	0	0	30	0	33	1	1	152	5	0	51	181	0	0	454
Total	0	0	0	0	108	2	139	1	12	567	20	0	186	889	0	0	1924
Grand Total	0	0	0	0	417	4	657	7	50	3550	185	7	867	3466	2	10	9222
Apprch %	0.0	0.0	0.0	0.0	38.4	0.4	60.6	0.6	1.3	93.6	4.9	0.2	20.0	79.8	0.0	0.2	
Total %	0.0	0.0	0.0	0.0	4.5	0.0	7.1	0.1	0.5	38.5	2.0	0.1	9.4	37.6	0.0	0.1	

							L	yster F	₹d.			U	S 15-5	501			U	S 15-5	501		
		Ea	ast Bo	und			W	est Bo	und			No	rth Bo	und			So	uth Bo	und		
Start	Left	Thr	Rig	Ped	App.	Left	Thr	Rig	Bus	App.	Left	Thr	Rig	Bus	App.	Left	Thr	Rig	Bus	App.	Int.
Time	Leit	u	ht	s	Total	Leit	u	ht	Dus	Total	Leit	u	ht	Dus	Total	Leit	u	ht	Dus	Total	Total
Peak Hour F	rom 0	7:00 to	08:4	5 - Pea	k 1 of 1																
Intersectio n	07:30																				
Volume	0	0	0	0	0	47	0	115	0	162	3	934	32	0	969	143	400	0	1	544	1675
Percent	0.0	0.0	0.0	0.0		29.0	0.0	71.0	0.0		0.3	96.4	3.3	0.0		26.3	73.5	0.0	0.2		
08:15 Volume	0	0	0	0	0	11	0	37	0	48	0	240	6	0	246	36	111	0	0	147	441
Peak																					0.950
Factor																					
High Int.	6:45:0	00 AM				07:30					07:30	1				08:15					
Volume	0	0	0	0	0	19	0	29	0	48	2	248	8	0	258	36	111	0	0	147	
Peak										0.844					0.939					0.925	
Factor										0.044					0.939					0.925	

The John R. McAdams Company, Inc.

File Name: US15-5~1 Site Code : 00270261 Start Date : 4/17/2007 Page No : 2

							L	yster F	₹d.			U	IS 15-5	501			U	S 15-5	501		
		Е	ast Bo	und			W	est Bo	und			No	orth Bo	ound			So	uth Bo	und		
Start Time	Left	Thr	Rig ht	Ped s	App. Total	Left	Thr	Rig ht	Bus	App. Total	Left	Thr	Rig ht	Bus	App. Total	Left	Thr u	Rig ht	Bus	App. Total	Int. Total
Peak Hour F	rom 14		1								l			l							1000
Intersectio n	15:00																				
Volume	0	0	0	0	0	78	0	116	2	196	10	449	33	2	494	159	602	0	4	765	1455
Percent	0.0	0.0	0.0	0.0		39.8	0.0	59.2	1.0		2.0	90.9	6.7	0.4		20.8	78.7	0.0	0.5		
15:45 Volume	0	0	0	0	0	24	0	29	0	53	1	111	7	0	119	44	181	0	1	226	398
Peak Factor High Int.						15:00					15:30)				15:45					0.914
Volume	0	0	0	0	0	24	0	39	2	65	3	124	11	1	139	44	181	0	1	226	
Peak Factor										0.754					0.888					0.846	
Peak Hour F	rom 16	:00 to	17:45	- Peak	1 of 1																
Intersectio n	16:45																				
Volume	0	0	0	0	0	103	2	145	0	250	15	538	19	0	572	188	951	0	0	1139	1961
Percent	0.0	0.0	0.0	0.0		41.2	8.0	58.0	0.0		2.6	94.1	3.3	0.0		16.5	83.5	0.0	0.0		
17:30 Volume	0	0	0	0	0	28	0	39	0	67	1	160	5	0	166	36	259	0	0	295	528
Peak Factor						17.20					17:30					17:15					0.929
High Int. Volume	0	0	0	0	0	17:30 28	0	39	0	67	17.30	160	5	0	166	57	248	0	0	305	
Peak Factor										0.933					0.861					0.934	

File Name: Lystra and JB AM Site Code: 00000000 Start Date : 4/19/2007

Page No : 1

Groups Printed- Unshifted

		JB			Ľ	YSTRA				JB			L	YSTRA	1		
		South	nbound			West	bound			North	bound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
06:00	0	0	0	0	11	22	0	33	6	0	46	52	0	20	3	23	108
06:15	0	0	0	0	24	39	0	63	23	0	44	67	0	33	10	43	173
06:30	0	0	0	0	19	72	0	91	41	0	65	106	0	65	17	82	279
06:45	0	0	0	0	15	91	0	106	49	0	52	101	0	102	35	137	344
Total	0	0	0	0	69	224	0	293	119	0	207	326	0	220	65	285	904
07:00	0	0	0	0	12	37	0	49	9	0	67	76	0	41	11	52	177
07:15	0	0	0	0	17	26	0	43	11	0	58	69	1	28	4	33	145
07:30	0	0	0	0	13	22	0	35	1	0	45	46	0	32	0	32	113
07:45	0	0	0	0	25	23	0	48	3	0	32	35	0	20	1	21	104
Total	0	0	0	0	67	108	0	175	24	0	202	226	1	121	16	138	539
Grand Total	0	0	0	0	136	332	0	468	143	0	409	552	1	341	81	423	1443
Apprch %	0	0	0		29.1	70.9	0		25.9	0	74.1		0.2	80.6	19.1		
Total %	0	0	0	0	9.4	23	0	32.4	9.9	0	28.3	38.3	0.1	23.6	5.6	29.3	

		JB			L	YSTRA				JB			L	YSTRA	ı		
		South	bound			West	bound			North	bound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Anal					of 1												<u></u>
Peak Hour for E	ntire Inte	rsection	Begins	at 06:15													
06:15	0	0	0	0	24	39	0	63	23	0	44	67	0	33	10	43	173
06:30	0	0	0	0	19	72	0	91	41	0	65	106	0	65	17	82	279
06:45	0	0	0	0	15	91	0	106	49	0	52	101	0	102	35	137	344
07:00	0	0	0	0	12	37	0	49	9	0	67	76	0	41	11	52	177
Total Volume	0	0	0	0	70	239	0	309	122	0	228	350	0	241	73	314	973
% App. Total	0	0	0		22.7	77.3	0		34.9	0	65.1		0	76.8	23.2		
PHF	.000	.000	.000	.000	.729	.657	.000	.729	.622	.000	.851	.825	.000	.591	.521	.573	.707

File Name : Lystra and JB Noon and PM Site Code : 00000000

Start Date: 4/19/2007

Page No : 1

Groups Printed- Unshifted

	,	JB			Ľ	YSTRA				JB			L	YSTRA	ı		
		South	bound			West	bound			North	bound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
13:00	0	0	0	0	14	22	0	36	7	0	6	13	0	11	6	17	66
13:15	0	0	0	0	18	36	0	54	17	0	8	25	0	17	4	21	100
13:30	0	0	0	0	27	23	0	50	12	0	16	28	0	18	5	23	101
13:45	0	0	0	0	21	41	0	62	11	0	16	27	0	37	16	53	142
Total	0	0	0	0	80	122	0	202	47	0	46	93	0	83	31	114	409
																	i
14:00	0	0	0	0	24	20	0	44	5	0	14	19	0	52	23	75	138
14:15	0	0	0	0	23	15	0	38	8	0	23	31	0	30	11	41	110
14:30	0	0	0	0	28	23	0	51	6	0	15	21	0	18	5	23	95
14:45	0	0	0	0	22	21	0	43	7	0	18	25	0	24	9	33	101
Total	0	0	0	0	97	79	0	176	26	0	70	96	0	124	48	172	444
,																	i
15:00	0	0	0	0	27	20	0	47	4	0	25	29	0	18	2	20	96
15:15	0	0	0	0	28	30	0	58	5	0	16	21	0	19	8	27	106
15:30	0	0	0	0	36	33	0	69	6	0	18	24	0	22	3	25	118
15:45	0	0	0	0	50	32	0	82	8	0	13	21	0	24	7	31	134
Total	0	0	0	0	141	115	0	256	23	0	72	95	0	83	20	103	454
,																	
16:00	0	0	0	0	37	39	0	76	6	0	25	31	0	32	15	47	154
16:15	0	0	0	0	40	44	0	84	7	0	28	35	0	38	13	51	170
16:30	0	0	0	0	50	46	0	96	1	0	22	23	0	38	7	45	164
16:45	0	0	0	0	30	34	0	64	4	0	22	26	0	19	10	29	119
Total	0	0	0	0	157	163	0	320	18	0	97	115	0	127	45	172	607
,																	1
Grand Total	0	0	0	0	475	479	0	954	114	0	285	399	0	417	144	561	1914
Apprch %	0	0	0		49.8	50.2	0		28.6	0	71.4		0	74.3	25.7		
Total %	0	0	0	0	24.8	25	0	49.8	6	0	14.9	20.8	0	21.8	7.5	29.3	

		JB			Ľ	YSTRA				JB			Ľ	YSTRA			
		South	bound			West	bound			North	bound			East	bound		
Start Time	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Left	Thru	Right	App. Total	Int. Total
Peak Hour Analy	ysis Fron	n 13:00 t	to 15:00	- Peak 1	of 1												
Peak Hour for E	ntire Inte	rsection	Begins	at 13:30													
13:30	0	0	0	0	27	23	0	50	12	0	16	28	0	18	5	23	101
13:45	0	0	0	0	21	41	0	62	11	0	16	27	0	37	16	53	142
14:00	0	0	0	0	24	20	0	44	5	0	14	19	0	52	23	75	138
14:15	0	0	0	0	23	15	0	38	8	0	23	31	0	30	11	41	110
Total Volume	0	0	0	0	95	99	0	194	36	0	69	105	0	137	55	192	491
% App. Total	0	0	0		49	51	0		34.3	0	65.7		0	71.4	28.6		
PHF	.000	.000	.000	.000	.880	.604	.000	.782	.750	.000	.750	.847	.000	.659	.598	.640	.864
5		45.45		5													
Peak Hour Analy	,				of 1												
Peak Hour for E			٠.				_		_	_			_		_		
15:45	0	0	0	0	50	32	0	82	8	0	13	21	0	24	7	31	134
16:00	0	0	0	0	37	39	0	76	6	0	25	31	0	32	15	47	154
16:15	0	0	0	0	40	44	0	84	7	0	28	35	0	38	13	51	170
16:30	0	0	0	0	50	46	0	96	1	0	22	23	0	38	7	45	164
Total Volume	0	0	0	0	177	161	0	338	22	0	88	110	0	132	42	174	622
% App. Total	0	0	0		52.4	47.6	0		20	0	80		0	75.9	24.1		
PHF	.000	.000	.000	.000	.885	.875	.000	.880	.688	.000	.786	.786	.000	.868	.700	.853	.915

24 Hour Two-Way Volume	7-9 AM Pk	Hour	4-6 PM	Pk Hour
-	Enton			
	Enter	Exit	Enter	Exit
739	14	43	48	28
	24 hour Two-Way		Peak Ho	our
	Volume	Er	nter	Exit
	743		39	33
	600		36	32
	739	24 hour Two-Way Volume	24 hour Two-Way Volume Er	24 hour Peak Ho Two-Way Volume Enter

Note: A zero indicates no data available. The above rates were calculated from these equations:

24-Hr. 2-Way Volume: $LN(T) = .92LN(X) + 2.71, R^2 = 0.96$ 7-9 AM Peak Hr. Total: T = .7(X) + 9.43 $R^2 = 0.89$, 0.25 Enter, 0.75 Exit 4-6 PM Peak Hr. Total: LN(T) = .9LN(X) + .53 $R^2 = 0.91$, 0.63 Enter, 0.37 Exit T = .7(X) + 12.05 $R^2 = 0.89$, 0.26 Enter, 0.74 Exit AM Gen Pk Hr. Total: LN(T) = .89LN(X) +PM Gen Pk Hr. Total: .61 $R^2 = 0.91$, 0.64 Enter, 0.36 Exit $LN(T) = .94LN(X) + 2.63, R^2 = 0.93$ Sat. 2-Way Volume: T = .89(X) + 10.93Sat. Pk Hr. Total: $R^2 = 0.9$, 0.54 Enter, 0.46 Exit T = 8.83(X) + -9.76, $R^2 = 0.94$ Sun. 2-Way Volume: LN(T) = .89LN(X) + .44Sun. Pk Hr. Total:

Source: Institute of Transportation Engineers Trip Generation, 7th Edition, 2003.

TRIP GENERATION BY MICROTRANS

 $R^2 = 0.88$, 0.53 Enter, 0.47 Exit

Lystra Road Property Trip Summary Spreadsheet

Intersection	NAME	Lystra Re	oad - US	15-501			Peak	AM				
_				L	ystra Roa	ad	1	US 15-50	1	J	JS 15-50	1
Volumes	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Existing				47		115	3	934	32	143	400	
Background	0	0	0	3	0	7	0	57	2	9	24	0
Approved Development	0	0	0	144	0	45	0	627	75	38	411	0
Future No-Build	0	0	0	194	0	167	3	1618	109	190	835	0
Site Primary				5		21			2	7		
Future Build	0	0	0	199	0	188	3	1618	111	197	835	0

Intersection	NAME	Lystra Re	oad - Site	Drive			Peak	AM				
	L	ystra Roa	d	L	ystra Roa	ıd		Site Drive	9			
Volumes	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Existing		314			361							
Background	0	19	0	0	22	0	0	0	0	0	0	0
Approved Development	0	89	0	0	131	0	0	0	0	0	0	0
Future No-Build	0	422	0	0	514	0	0	0	0	0	0	0
Site Primary			8	6			26		17			
Future Build	0	422	8	6	514	0	26	0	17	0	0	0

Intersection	NAME	Lystra Re	oad - Jacl	Bennett	Road		Peak	AM				
	L	ystra Roa	d	L	ystra Roa	ad	Jack	Bennett 1	Road			
Volumes	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Existing		241	73	70	239		122		228			
Background	0	15	4	4	15	0	7	0	14	0	0	0
Approved Development	0	88	22	0	94	0	24	0	0	0	0	0
Future No-Build	0	344	99	74	348	0	153	0	242	0	0	0
Site Primary		11	6		4		2					
Future Build	0	355	105	74	352	0	155	0	242	0	0	0

Intersection	NAME	Lystra Re	oad - US	15-501			Peak	PM				
				L	ystra Roa	ıd	Ţ	JS 15-50	1	J	JS 15-50	I
Volumes	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Existing				103	0	145	15	538	19	188	951	
Background	0	0	0	6	0	9	0	33	1	11	58	0
Approved Development	0	0	0	338	0	61	0	552	78	26	428	0
Future No-Build	0	0	0	447	0	215	15	1123	98	225	1437	0
Site Primary				3		13			6	23		_
Future Build	0	0	0	450	0	228	15	1123	104	248	1437	0

Intersection	NAME	Lystra Ro	oad - Site	Drive			Peak	PM				
	L	ystra Road	d	L	ystra Roa	ıd		Site Drive)			
Volumes	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Existing		174			183							
Background	0	11	0	0	11	0	0	0	0	0	0	0
Approved Development	0	149	0	0	109	0	0	0	0	0	0	0
Future No-Build	0	334	0	0	303	0	0	0	0	0	0	0
Site Primary			29	19			17		11			-
Future Build	0	334	29	19	303	0	17	0	11	0	0	0

Intersection	NAME Lystra Road - Jack Bennett Road						Peak	PM				
	Lystra Road			Lystra Road			Jack Bennett Road					
Volumes	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Existing		132	42	177	161		22		88			
Background	0	8	3	11	10	0	1	0	5	0	0	0
Approved Development	0	113	29	0	100	0	25	0	0	0	0	0
Future No-Build	0	253	74	188	271	0	48	0	93	0	0	0
Site Primary		7	4		12		7					
Future Build	0	260	78	188	283	0	55	0	93	0	0	0

Intersection	NAME	Lystra R	oad - US	15-501			Peak	PM - Sch	nool			
				L	ystra Roa	ad	Ţ	JS 15-50	1	Ţ	US 15-50	I
Volumes	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Existing				78		116	10	449	33	159	602	
Background	0	0	0	5	0	7	0	27	2	10	37	0
Approved Development	0	0	0	338	0	61	0	552	78	26	428	0
Future No-Build	0	0	0	421	0	184	10	1028	113	195	1067	0
Site Primary				3		13			4	15		
Future Build	0	0	0	424	0	197	10	1028	117	210	1067	0

Intersection	NAME	Lystra Ro	oad - Site	Drive			Peak	PM - Sch	ool			
	L	ystra Roa	d	L	ystra Roa	ıd		Site Drive)			
Volumes	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Existing		192			135							
Background	0	12	0	0	8	0	0	0	0	0	0	0
Approved Development	0	149	0	0	109	0	0	0	0	0	0	0
Future No-Build	0	353	0	0	252	0	0	0	0	0	0	0
Site Primary			19	13			16		11			
Future Build	0	353	19	13	252	0	16	0	11	0	0	0

Intersection	NAME	Lystra Re	oad - Jack	Bennett	Road		Peak	PM - Sch	nool			
	L	ystra Roa	d	L	ystra Roa	nd	Jack	Bennett 1	Road			
Volumes	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Existing		137	55	95	99		36		69			
Background	0	8	3	6	6	0	2	0	4	0	0	0
Approved Development	0	113	29	0	100	0	25	0	0	0	0	0
Future No-Build	0	258	87	101	205	0	63	0	73	0	0	0
Site Primary		7	4		8		4					
Future Build	0	265	91	101	213	0	67	0	73	0	0	0

US 15-501 – Lystra Road Intersection Capacity Analyses

	•	•	₹î	†	/	-	↓
Lane Group	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Lane Configurations	ች	1	t	^	7	ሻ	† †
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150	0	250		100	250	
Storage Lanes	1	1	1		1	1	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50	50	50	50	50
Trailing Detector (ft)	0	0	0	0	0	0	0
Turning Speed (mph)	15	9	9	U	9	15	J
Lane Util. Factor	1.00	1.00	1.00	0.95	1.00	1.00	0.95
Frt	1.00	0.850	1.00	0.93	0.850	1.00	0.93
Flt Protected	0.950	0.050	0.950		0.050	0.950	
	1770	1583	1770	3539	1583	1770	3539
Satd. Flow (prot)		1303		3339	1000		3339
Flt Permitted	0.950	1500	0.495	2520	1500	0.139	2520
Satd. Flow (perm)	1770	1583	922	3539	1583	259	3539
Right Turn on Red		Yes			Yes		
Satd. Flow (RTOR)		47	4.5-		36		4
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)	45			45			45
Link Distance (ft)	4998			1773			2200
Travel Time (s)	75.7			26.9			33.3
Volume (vph)	47	115	3	934	32	143	400
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	52	128	3	1038	36	159	444
Lane Group Flow (vph)	52	128	3	1038	36	159	444
Turn Type		pm+ov	Perm		pm+ov	pm+pt	
Protected Phases	8	1		2	8	1	6
Permitted Phases		8	2		2	6	
Detector Phases	8	1	2	2	8	1	6
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	16.0	13.0	16.0	16.0	16.0	13.0	16.0
Total Split (s)	23.0	23.0	44.0	44.0	23.0	23.0	67.0
Total Split (%)	26%	26%	49%	49%	26%	26%	74%
Maximum Green (s)	16.0	16.0	37.0	37.0	16.0	16.0	60.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lead/Lag	2.0	Lead			2.0	Lead	2.0
<u> </u>			Lag	Lag			
Lead-Lag Optimize?	2.0	Yes	Yes	Yes	2.0	Yes	2.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	Min	Min	None	None	Min
Act Effct Green (s)	10.7	28.2	35.8	35.8	49.4	50.6	50.3
Actuated g/C Ratio	0.16	0.40	0.59	0.59	0.72	0.77	0.82
v/c Ratio	0.18	0.20	0.01	0.50	0.03	0.35	0.15
Uniform Delay, d1	25.7	9.5	6.7	9.5	0.0	2.1	2.2
Delay	24.3	8.5	9.3	10.4	1.1	3.2	2.5
LOS	С	Α	Α	В	Α	Α	Α
Approach Delay	13.1			10.1			2.7
Approach LOS	В			В			Α
Queue Length 50th (ft)	16	17	1	141	0	15	22
Queue Length 95th (ft)	51	58	5	228	6	38	41
Edodo Longin John (II)	J 1	50	<u> </u>	220	<u> </u>	50	71

Lystra Road Property 4/24/2007 Existing AM (2007) erl

Splits and Phases: 1: Lystra Road & US 15-501

	•	•	₹I	†	/	>	ļ
Lane Group	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Lane Configurations	*	7	Ð	^	7	*	^
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150	0	250		100	250	
Storage Lanes	1	1	1		1	1	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50	50	50	50	50
Trailing Detector (ft)	0	0	0	0	0	0	0
Turning Speed (mph)	15	9	9		9	15	
Lane Util. Factor	1.00	1.00	1.00	0.95	1.00	1.00	0.95
Frt	1.00	0.850	1.00	0.00	0.850	1.00	0.00
Flt Protected	0.950	0.000	0.950		0.000	0.950	
Satd. Flow (prot)	1770	1583	1770	3539	1583	1770	3539
Flt Permitted	0.950	1000	0.271	0000	1000	0.274	0000
Satd. Flow (perm)	1770	1583	505	3539	1583	510	3539
,	1770	Yes	505	3338	Yes	510	3538
Right Turn on Red							
Satd. Flow (RTOR)	1.00	110	1.00	1.00	21	1.00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)	45			45			45
Link Distance (ft)	4998			1773			2200
Travel Time (s)	75.7	4.45	45	26.9	10	400	33.3
Volume (vph)	103	145	15	538	19	188	951
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	114	161	17	598	21	209	1057
Lane Group Flow (vph)	114	161	17	598	21	209	1057
Turn Type		pm+ov	Perm		pm+ov		
Protected Phases	8	1		2	8	1	6
Permitted Phases		8	2		2	6	
Detector Phases	8	1	2	2	8	1	6
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	16.0	13.0	16.0	16.0	16.0	13.0	16.0
Total Split (s)	26.0	29.0	35.0	35.0	26.0	29.0	64.0
Total Split (%)	29%	32%	39%	39%	29%	32%	71%
Maximum Green (s)	19.0	22.0	28.0	28.0	19.0	22.0	57.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lead/Lag		Lead	Lag	Lag		Lead	
Lead-Lag Optimize?		Yes	Yes	Yes		Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	Min	Min	None	None	Min
Act Effct Green (s)	12.5	31.7	27.8	27.8	43.5	42.7	41.4
Actuated g/C Ratio	0.20	0.48	0.47	0.47	0.68	0.67	0.70
v/c Ratio	0.20	0.40	0.47	0.47	0.02	0.87	0.70
		3.3		11.3			4.4
Uniform Delay, d1	21.6		9.8		0.0	3.5	
Delay	18.4	3.1	14.1	13.4	1.8	4.5	5.1
LOS	В	Α	В	B	Α	Α	A
Approach Delay	9.5			13.0			5.0
Approach LOS	A	_		В			A
Queue Length 50th (ft)	29	7	4	75	0	22	75
Queue Length 95th (ft)	78	36	17	139	5	55	138

Splits and Phases: 1: Lystra Road & US 15-501

	•	•	₹N	†	/	-	ļ
Lane Group	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Lane Configurations	*	#	ħ	^	1	*	^
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150	0	250	.000	100	250	.000
Storage Lanes	1	1	1		1	1	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50	50	50	50	50
Trailing Detector (ft)	0	0	0	0	0	0	0
Turning Speed (mph)	15	9	9	U	9	15	U
Lane Util. Factor	1.00	1.00	1.00	0.95	1.00	1.00	0.95
Frt	1.00	0.850	1.00	0.93	0.850	1.00	0.93
Flt Protected	0.950	0.000	0.950		0.050	0.950	
	1770	1583	1770	3539	1583	1770	3530
Satd. Flow (prot)		1003		3039	1303		3539
Flt Permitted	0.950	1500	0.397	2520	1500	0.328	2520
Satd. Flow (perm)	1770	1583	740	3539	1583	611	3539
Right Turn on Red		Yes			Yes		
Satd. Flow (RTOR)		129	4	4	37	4	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)	45			45			45
Link Distance (ft)	4998			1773			2200
Travel Time (s)	75.7			26.9			33.3
Volume (vph)	78	116	10	449	33	159	602
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	87	129	11	499	37	177	669
Lane Group Flow (vph)	87	129	11	499	37	177	669
Turn Type	I	om+ov	Perm		pm+ov	pm+pt	
Protected Phases	8	1		2	8	1	6
Permitted Phases		8	2		2	6	
Detector Phases	8	1	2	2	8	1	6
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	16.0	13.0	16.0	16.0	16.0	13.0	16.0
Total Split (s)	28.0	28.0	34.0	34.0	28.0	28.0	62.0
Total Split (%)	31%	31%	38%	38%	31%	31%	69%
Maximum Green (s)	21.0	21.0	27.0	27.0	21.0	21.0	55.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0
. ,							
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lead/Lag		Lead	Lag	Lag		Lead	
Lead-Lag Optimize?		Yes	Yes	Yes		Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	Min	Min	None	None	Min
Act Effct Green (s)	13.0	33.3	29.4	29.4	46.8	48.1	47.7
Actuated g/C Ratio	0.19	0.46	0.48	0.48	0.67	0.72	0.77
v/c Ratio	0.25	0.16	0.03	0.30	0.03	0.26	0.24
Uniform Delay, d1	23.6	0.0	8.8	10.1	0.0	2.7	3.0
Delay	16.7	1.7	13.0	11.4	1.6	3.7	3.5
LOS	В	Α	В	В	Α	Α	Α
Approach Delay	7.7			10.8			3.5
Approach LOS	Α			В			Α
Queue Length 50th (ft)	20	0	2	57	0	17	38
Queue Length 95th (ft)	58	20	12	107	7	43	71
Quede Length 95th (It)	50	20	14	101	,	40	1 1

Lystra Road Property 4/25/2007 Existing School PM (2007) erl

	•	•	₹N	†	/	-	ļ
Lane Group	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Lane Configurations	*	7	ħ	^	1	*	^
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150	0	250	.000	100	250	.000
Storage Lanes	1	1	1		1	1	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50	50	50	50	50
Trailing Detector (ft)	0	0	0	0	0	0	0
Turning Speed (mph)	15	9	9	U	9	15	U
Lane Util. Factor	1.00	1.00	1.00	0.95	1.00	1.00	0.95
Frt	1.00	0.850	1.00	0.93	0.850	1.00	0.93
Flt Protected	0.950	0.050	0.950		0.050	0.950	
	1770	1583	1770	3539	1583	1770	3539
Satd. Flow (prot)		1000		3339	1000		3339
Flt Permitted	0.950	1500	0.308	2520	1500	0.070	2520
Satd. Flow (perm)	1770	1583	574	3539	1583	130	3539
Right Turn on Red		Yes			Yes		
Satd. Flow (RTOR)		17			121	4	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)	45			45			45
Link Distance (ft)	4973			1773			2200
Travel Time (s)	75.3			26.9			33.3
Volume (vph)	194	167	3	1618	109	190	835
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	216	186	3	1798	121	211	928
Lane Group Flow (vph)	216	186	3	1798	121	211	928
Turn Type		pm+ov	Perm		pm+ov	pm+pt	
Protected Phases	8	1		2	8	1	6
Permitted Phases		8	2		2	6	
Detector Phases	8	1	2	2	8	1	6
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	16.0	13.0	16.0	16.0	16.0	13.0	16.0
Total Split (s)	18.0	15.0	57.0	57.0	18.0	15.0	72.0
Total Split (%)	20%	17%	63%	63%	20%	17%	80%
Maximum Green (s)	11.0	8.0	50.0	50.0	11.0	8.0	65.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0
` ,							
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lead/Lag		Lead	Lag	Lag		Lead	
Lead-Lag Optimize?		Yes	Yes	Yes		Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	Min	Min	None	None	Min
Act Effct Green (s)	13.8	28.6	50.2	50.2	68.1	65.1	65.1
Actuated g/C Ratio	0.16	0.33	0.58	0.58	0.78	0.75	0.75
v/c Ratio	0.77	0.35	0.01	0.88	0.10	0.70	0.35
Uniform Delay, d1	34.9	19.9	7.7	15.7	0.0	15.9	3.7
Delay	45.0	21.3	7.7	16.9	0.4	22.4	3.7
LOS	D	С	Α	В	Α	С	Α
Approach Delay	34.1			15.9			7.2
Approach LOS	С			В			Α
Queue Length 50th (ft)	120	72	1	414	0	63	73
Queue Length 95th (ft)	#232	130	4	530	8	#160	95
Queue Length 35th (It)	πΔΟΔ	130	+	550	Ü	π 100	90

Lystra Road Property 4/25/2007 Future No-Build AM (2007) erl

	-	•	Ð	†	/	-	Ţ
Lane Group	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Internal Link Dist (ft)	4893	VVDIX	INDO	1693	NDIX	ODL	2120
50th Up Block Time (%)	4033			1033			2120
95th Up Block Time (%)							
Turn Bay Length (ft)	150		250		100	250	
50th Bay Block Time %				19%			
95th Bay Block Time %	36%			24%			
Queuing Penalty (veh)	67			1			
Intersection Summary							
Area Type: O	ther						
Cycle Length: 90							
Actuated Cycle Length: 8	86.9						
Natural Cycle: 70							
Control Type: Actuated-l	Uncoor	dinated					
Maximum v/c Ratio: 0.88	3						
Intersection Signal Delay	/			Ir	ntersecti	on LOS	8: B
Intersection Capacity Uti					CU Leve		vice D
# 95th percentile volun	ne exce	eds cap	pacity, q	ueue m	ay be lo	nger.	

	•	*	₹I	†	/	-	ļ
Lane Group	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Lane Configurations	*	7	Ð	^	7	*	^
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150	0	250		100	250	
Storage Lanes	1	1	1		1	1	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50	50	50	50	50
Trailing Detector (ft)	0	0	0	0	0	0	0
Turning Speed (mph)	15	9	9		9	15	
Lane Util. Factor	1.00	1.00	1.00	0.95	1.00	1.00	0.95
Frt	1.00	0.850	1.00	0.00	0.850	1.00	0.00
Flt Protected	0.950	0.000	0.950		0.000	0.950	
Satd. Flow (prot)	1770	1583	1770	3539	1583	1770	3539
Flt Permitted	0.950	1000	0.108	0000	1000	0.098	0000
Satd. Flow (perm)	1770	1583	201	3539	1583	183	3539
Right Turn on Red	1770	Yes	201	5558	Yes	100	5558
Satd. Flow (RTOR)		17			109		
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)	45	1.00	1.00	45	1.00	1.00	45
Link Speed (mpn) Link Distance (ft)	4973			1773			2200
Travel Time (s)	75.3			26.9			33.3
. ,	447	215	15	1123	98	225	1437
Volume (vph) Peak Hour Factor							
	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	497	239	17	1248	109	250	1597
Lane Group Flow (vph)	497	239	17 Dorm	1248	109	250	1597
Turn Type		pm+ov	Perm		pm+ov		
Protected Phases	8	1	0	2	8	1	6
Permitted Phases		8	2	_	2	6	_
Detector Phases	8	1	2	2	8	1	6
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	16.0	13.0	16.0	16.0	16.0	13.0	16.0
Total Split (s)	33.0	16.0	41.0	41.0	33.0	16.0	57.0
Total Split (%)	37%	18%	46%	46%	37%	18%	63%
Maximum Green (s)	26.0	9.0	34.0	34.0	26.0	9.0	50.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lead/Lag		Lead	Lag	Lag		Lead	
Lead-Lag Optimize?		Yes	Yes	Yes		Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	Min	Min	None	None	Min
Act Effct Green (s)	27.7	43.6	35.5	35.5	67.3	51.5	51.5
Actuated g/C Ratio	0.32	0.50	0.41	0.41	0.77	0.59	0.59
v/c Ratio	0.88	0.30	0.21	0.87	0.09	0.77	0.76
Uniform Delay, d1	28.1	11.7	16.7	23.6	0.0	16.1	13.3
Delay	36.8	12.4	19.3	25.8	0.5	25.7	13.9
LOS	D	В	В	С	Α	С	В
Approach Delay	28.9			23.7			15.5
Approach LOS	С			С			В
Queue Length 50th (ft)	264	70	6	331	0	85	330
Queue Length 95th (ft)	#443	120	24	424	9	#204	421
(ii)		0		'		0 .	

Lystra Road Property 4/25/2007 Future No-Build PM (2007) erl

	~	•	Ð	†	<i>></i>	-	Ţ
	*\D\	MADD	NID!!	NDT	,	001	• ODT
Lane Group	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Internal Link Dist (ft)	4893			1693			2120
50th Up Block Time (%)							
95th Up Block Time (%)							
Turn Bay Length (ft)	150		250		100	250	
50th Bay Block Time %	33%			17%			14%
95th Bay Block Time %	49%			26%			20%
Queuing Penalty (veh)	196			3			41
Intersection Summary							
Area Type: O	ther						
Cycle Length: 90							
Actuated Cycle Length:	87.2						
Natural Cycle: 70							
Control Type: Actuated-I	Uncoor	dinated					
Maximum v/c Ratio: 0.88	3						
Intersection Signal Delay	y: 20.8			Ir	ntersecti	on LOS	S: C
Intersection Capacity Uti	ilization	85.9%		IC	CU Leve	l of Ser	vice D
# 95th percentile volun	ne exce	eds cap	acity, q	ueue m	ay be lo	nger.	

1: Lystra Road & US 15-501 Splits and Phases:

	•	•	₹I	†	/	>	ļ
Lane Group	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Lane Configurations	ሻ	7	ı.	†	7	ኝ	^
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150	0	250	1000	100	250	1000
Storage Lanes	130	1	1		1	1	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50	50	50	50	50
Trailing Detector (ft)	0	0	0	0	0	0	0
Turning Speed (mph)	15	9	9	U	9	15	U
Lane Util. Factor	1.00	1.00	1.00	0.95	1.00	1.00	0.95
Frt	1.00	0.850	1.00	0.33	0.850	1.00	0.33
Flt Protected	0.950	0.030	0.950		0.030	0.950	
Satd. Flow (prot)	1770	1583	1770	3539	1583	1770	3539
Flt Permitted	0.950	1303	0.233	3338	1303	0.103	3338
		1583	434	2520	1583		2520
Satd. Flow (perm)	1770		434	3539		192	3539
Right Turn on Red		Yes			Yes		
Satd. Flow (RTOR)	4.00	20	4.00	4.00	126	4.00	4.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)	45			45			45
Link Distance (ft)	4973			1773			2200
Travel Time (s)	75.3	404	40	26.9	440	105	33.3
Volume (vph)	421	184	10	1028	113	195	1067
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	468	204	11	1142	126	217	1186
Lane Group Flow (vph)	468	204	11	1142	126	217	1186
Turn Type		pm+ov	Perm		pm+ov		
Protected Phases	8	1		2	8	1	6
Permitted Phases		8	2		2	6	
Detector Phases	8	1	2	2	8	1	6
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	16.0	13.0	16.0	16.0	16.0	13.0	16.0
Total Split (s)	35.0	16.0	39.0	39.0	35.0	16.0	55.0
Total Split (%)	39%	18%	43%	43%	39%	18%	61%
Maximum Green (s)	28.0	9.0	32.0	32.0	28.0	9.0	48.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lead/Lag		Lead	Lag	Lag		Lead	
Lead-Lag Optimize?		Yes	Yes	Yes		Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	Min	Min	None	None	Min
Act Effct Green (s)	27.4	43.1	32.4	32.4	63.9	48.2	48.2
Actuated g/C Ratio	0.33	0.51	0.39	0.39	0.76	0.58	0.58
v/c Ratio	0.81	0.25	0.07	0.83	0.10	0.66	0.58
Uniform Delay, d1	25.6	10.1	15.9	22.9	0.0	11.5	11.2
Delay Delay	28.5	10.7	18.0	24.9	0.5	18.1	12.0
LOS	20.5 C	В	В	C C	Α	В	12.0 B
Approach Delay	23.1			22.4			13.0
Approach LOS	23.1 C			C			13.0 B
Queue Length 50th (ft)	235	54	4	302	0	64	215
• • • • • • • • • • • • • • • • • • • •	#368	95	15	388	9	#156	276
Queue Length 95th (ft)	#300	95	ıɔ	300	9	#100	210

Lystra Road Property 4/24/2007 Future No-Build School PM (2007) erl

Synchro 5 Report Page 1

	•	•	₹I	†	~	\	ļ
Lane Group	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Internal Link Dist (ft)	4893			1693			2120
50th Up Block Time (%)							
95th Up Block Time (%)							
Turn Bay Length (ft)	150		250		100	250	
50th Bay Block Time %	28%			14%			
95th Bay Block Time %	42%			24%			8%
Queuing Penalty (veh)	141			2			9
Intersection Summary							
Area Type: O	ther						
Cycle Length: 90							
Actuated Cycle Length: 8	83.7						
Natural Cycle: 65							
Control Type: Actuated-U	Jncoor	dinated					
Maximum v/c Ratio: 0.83	3						
Intersection Signal Delay	/ : 18.6			Ir	ntersecti	on LOS	: B
Intersection Capacity Uti					CU Leve		vice C
# 95th percentile volun	ne exce	eds cap	acity, q	ueue m	ay be lo	nger.	

1: Lystra Road & US 15-501 Splits and Phases:

	•	•	₹I	†	/	>	ļ
Lane Group	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Lane Configurations	*	7	Ð	^	7	*	^
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150	0	250		100	250	
Storage Lanes	1	1	1		1	1	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50	50	50	50	50
Trailing Detector (ft)	0	0	0	0	0	0	0
Turning Speed (mph)	15	9	9		9	15	
Lane Util. Factor	1.00	1.00	1.00	0.95	1.00	1.00	0.95
Frt	1.00	0.850	1.00	0.00	0.850	1.00	0.00
Flt Protected	0.950	0.000	0.950		0.000	0.950	
Satd. Flow (prot)	1770	1583	1770	3539	1583	1770	3539
Flt Permitted	0.950	1000	0.308	0000	1000	0.071	0000
Satd. Flow (perm)	1770	1583	574	3539	1583	132	3539
Right Turn on Red	1770	Yes	314	5558	Yes	132	5558
Satd. Flow (RTOR)		16			123		
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)	45	1.00	1.00	45	1.00	1.00	45
Link Speed (mpn) Link Distance (ft)	4998			1773			2200
Travel Time (s)	75.7			26.9			33.3
` ,	199	188	3	1618	111	197	835
Volume (vph) Peak Hour Factor							
	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	221	209	3	1798	123	219	928
Lane Group Flow (vph)	221	209	3 Dorm	1798	123	219	928
Turn Type		om+ov	Perm		pm+ov		
Protected Phases	8	1	_	2	8	1	6
Permitted Phases	_	8	2		2	6	
Detector Phases	8	1	2	2	8	1	6
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	16.0	13.0	16.0	16.0	16.0	13.0	16.0
Total Split (s)	19.0	15.0	56.0	56.0	19.0	15.0	71.0
Total Split (%)	21%	17%	62%	62%	21%	17%	79%
Maximum Green (s)	12.0	8.0	49.0	49.0	12.0	8.0	64.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lead/Lag		Lead	Lag	Lag		Lead	
Lead-Lag Optimize?		Yes	Yes	Yes		Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	Min	Min	None	None	Min
Act Effct Green (s)	14.6	29.4	49.7	49.7	68.2	64.5	64.5
Actuated g/C Ratio	0.17	0.34	0.57	0.57	0.78	0.74	0.74
v/c Ratio	0.75	0.38	0.01	0.89	0.10	0.73	0.35
Uniform Delay, d1	34.5	20.1	8.0	16.3	0.0	16.6	4.0
Delay	41.9	21.4	8.3	18.2	0.4	24.1	4.0
LOS	D	С	Α	В	Α	С	A
Approach Delay	31.9			17.1			7.9
Approach LOS	С			В			Α
Queue Length 50th (ft)	121	83	1	427	0	68	78
Queue Length 95th (ft)	#228	144	4	547	8	#173	102
adda Longin John (It)	.,	, 77	7	J-1	0	" . 1 0	.02

Lystra Road Property 4/25/2007 Future Build AM (2007) erl

	•	•	∳ I	†	~	>	ļ
Lane Group	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Internal Link Dist (ft)	4918			1693			2120
50th Up Block Time (%)							
95th Up Block Time (%)							
Turn Bay Length (ft)	150		250		100	250	
50th Bay Block Time %				20%			
95th Bay Block Time %	34%	4%		25%			
Queuing Penalty (veh)	71	4		1			
Intersection Summary							
Area Type: O	ther						
Cycle Length: 90							
Actuated Cycle Length:	87.1						
Natural Cycle: 75							
Control Type: Actuated-I	Uncoor	dinated					
Maximum v/c Ratio: 0.89	9						
Intersection Signal Delay	y: 15.9			Ir	ntersecti	on LOS	8: B
Intersection Capacity Uti	ilization	84.1%		IC	CU Leve	l of Ser	vice D
# 95th percentile volun	ne exce	eds cap	acity, q	ueue m	ay be lo	nger.	

Splits and Phases: 1: Lystra Road & US 15-501

	•	*	₹I	†	/	-	ļ
Lane Group	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Lane Configurations	*	1	ħ	^	1	*	^
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	150	0	250		100	250	
Storage Lanes	1	1	1		1	1	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Leading Detector (ft)	50	50	50	50	50	50	50
Trailing Detector (ft)	0	0	0	0	0	0	0
Turning Speed (mph)	15	9	9		9	15	
Lane Util. Factor	1.00	1.00	1.00	0.95	1.00	1.00	0.95
Frt	1.00	0.850	1.00	0.00	0.850	1.00	0.00
Flt Protected	0.950	3.000	0.950		5.000	0.950	
Satd. Flow (prot)	1770	1583	1770	3539	1583	1770	3539
Flt Permitted	0.950	1000	0.111	0008	1000	0.100	0008
Satd. Flow (perm)	1770	1583	207	3539	1583	186	3539
,	1770	Yes	207	3338	Yes	100	5558
Right Turn on Red		15					
Satd. Flow (RTOR)	1.00		1.00	1.00	116	1.00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Link Speed (mph)	45			45			45
Link Distance (ft)	4998			1773			2200
Travel Time (s)	75.7	000	45	26.9	404	0.40	33.3
Volume (vph)	450	228	15	1123	104	248	1437
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	500	253	17	1248	116	276	1597
Lane Group Flow (vph)	500	253	17	1248	116	276	1597
Turn Type		pm+ov	Perm		pm+ov		
Protected Phases	8	1		2	8	1	6
Permitted Phases		8	2		2	6	
Detector Phases	8	1	2	2	8	1	6
Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Minimum Split (s)	16.0	13.0	16.0	16.0	16.0	13.0	16.0
Total Split (s)	33.0	17.0	40.0	40.0	33.0	17.0	57.0
Total Split (%)	37%	19%	44%	44%	37%	19%	63%
Maximum Green (s)	26.0	10.0	33.0	33.0	26.0	10.0	50.0
Yellow Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lead/Lag		Lead	Lag	Lag		Lead	
Lead-Lag Optimize?		Yes	Yes	Yes		Yes	
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Recall Mode	None	None	Min	Min	None	None	Min
Act Effct Green (s)	27.9	44.8	35.0	35.0	66.9	51.9	51.9
Actuated g/C Ratio	0.32	0.51	0.40	0.40	0.76	0.59	0.59
v/c Ratio	0.89	0.31	0.20	0.88	0.09	0.81	0.76
Uniform Delay, d1	28.4	11.7	17.3	24.5	0.09	17.8	13.4
Delay	37.7	12.2	19.9	27.8	0.5	28.7	13.4
LOS	37.7 D	12.2 B	19.9 B	27.6 C		20.7 C	13.9 B
		D	D		Α	C	
Approach LOS	29.1			25.4			16.1
Approach LOS	C	7.4	_	C	^	400	В
Queue Length 50th (ft)	267	74	6	338	0	100	330
Queue Length 95th (ft)	#448	124	24	#469	10	#231	421

Lystra Road Property 4/24/2007 Future Build PM (2007) erl

	•	•	₹I	†	~	\	ļ
Lane Group	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Internal Link Dist (ft)	4918			1693			2120
50th Up Block Time (%)							
95th Up Block Time (%)							
Turn Bay Length (ft)	150		250		100	250	
50th Bay Block Time %	33%			18%			14%
95th Bay Block Time %	49%			29%			20%
Queuing Penalty (veh)	209			4			45
Intersection Summary							
Area Type: Ot	ther						
Cycle Length: 90							
Actuated Cycle Length: 8	37.8						
Natural Cycle: 70							
Control Type: Actuated-L	Jncoor	dinated					
Maximum v/c Ratio: 0.89							
Intersection Signal Delay	: 21.8			lr	ntersecti	on LOS	5: C
Intersection Capacity Util	ization	87.5%		10	CU Leve	of Ser	vice D
# 95th percentile volum	e exce	eds cap	acity, q	ueue m	ay be lo	nger.	

W 151 1 1 5 10 10 15 50 1

Queue shown is maximum after two cycles.

•	*	₹I	†	/	>	ļ
WBL	WBR	NBU	NBT	NBR	SBL	SBT
*						^
1900						1900
			4.0			4.0
						50
						0
			0.95			0.95
1.00		1.00	0.00		1.00	0.00
0.950	0.000	0.950		0.000	0.950	
	1583		3539	1583		3539
	.000		0000	1000		0000
	1583		3530	1583		3539
1110		770	0000		132	0000
1.00		1.00	1.00		1.00	1.00
	1.00	1.00		1.00	1.00	45
						2200
						33.3
	107	10		117	210	1067
						0.90
						1186
						1186
						1100
		reiiii				6
ď		2	2			6
0			2			
						6
						4.0
						16.0
						56.0
						62%
						49.0
						5.0
2.0				2.0		2.0
				_		_
						3.0
None				None		Min
27.2	43.7	32.7	32.7	64.0	49.3	49.3
0.32	0.52	0.39	0.39	0.76	0.58	0.58
0.83	0.26	0.06	0.83	0.11	0.68	0.58
26.4	10.3	16.1	23.2	0.0	13.0	11.0
30.7	10.9	18.0	25.1	0.5	18.7	11.6
С	В	В	С	Α	В	В
24.4			22.5			12.8
С			С			В
241	59	4	302	0	73	208
#397	102	15	388	10	#168	267
	8 4.0 16.0 34.0 38% 27.0 5.0 2.0 None 27.2 0.32 0.83 26.4 30.7 C 24.4 C	1900 1900 150 0 1 1 1 4.0 4.0 50 50 0 0 15 9 1.00 0.850 0.950 1770 1583 0.950 1770 1583 Yes 20 1.00 1.00 45 4998 75.7 424 197 0.90 0.90 471 219 471 219 471 219 pm+ov 8 1 8 8 8 1 4.0 4.0 16.0 13.0 34.0 17.0 38% 19% 27.0 10.0 5.0 5.0 2.0 Lead Yes 3.0 3.0 None None 27.2 43.7 0.32 0.52 0.83 0.26 26.4 10.3 30.7 10.9 C B 24.4 C B 241 59	1900 1900 1900 150 0 250 1 1 1 1 4.0 4.0 4.0 50 50 50 0 0 0 0 15 9 9 1.00 1.00 1.00 0.850 0.950 1770 1583 1770 0.950 0.238 1770 1583 443 Yes 20 1.00 1.00 1.00 45 4998 75.7 424 197 10 0.90 0.90 0.90 471 219 11 471 219 11 pm+ov Perm 8 1 8 2 8 1 2 4.0 4.0 4.0 16.0 13.0 16.0 34.0 17.0 39.0 38% 19% 43% 27.0 10.0 32.0 5.0 5.0 5.0 2.0 2.0 2.0 Lead Lag Yes 3.0 3.0 3.0 None None Min 27.2 43.7 32.7 0.32 0.52 0.39 0.83 0.26 0.06 26.4 10.3 16.1 30.7 10.9 18.0 C B B 24.4 C B B 24.4 C B B B 24.4 C B B B 24.4 C B B B	1900 1900 1900 1900 150 0 250 1 1 1 1 4.0 4.0 4.0 50 50 50 50 0 0 0 0	1900 1900	1900 1900 1900 1900 1900 1900 1500

Lystra Road Property 4/24/2007 Future Build School PM (2007) erl

Synchro 5 Report Page 1

	•	•	₹I	†	~	\	ļ
Lane Group	WBL	WBR	NBU	NBT	NBR	SBL	SBT
Internal Link Dist (ft)	4918			1693			2120
50th Up Block Time (%)							
95th Up Block Time (%)							
Turn Bay Length (ft)	150		250		100	250	
50th Bay Block Time %	29%			14%			
95th Bay Block Time %	44%			24%			7%
Queuing Penalty (veh)	160			2			8
Intersection Summary							
Area Type: Ot	ther						
Cycle Length: 90							
Actuated Cycle Length: 8	34.6						
Natural Cycle: 65							
Control Type: Actuated-L	Incoor	dinated					
Maximum v/c Ratio: 0.83							
Intersection Signal Delay	: 18.9			lr	ntersecti	on LOS	8: B
Intersection Capacity Util	ization	80.6%		IC	CU Leve	el of Ser	vice D
# 95th percentile volum	e exce	eds cap	acity, q	ueue m	ay be lo	nger.	

Lystra Road – Site Drive Intersection Capacity Analyses

	-	•	•	←	1	/		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	ĥ			4	¥			
Sign Control	Free			Free	Stop			
Grade	0%			0%	0%			
Volume (veh/h)	422	8	6	514	26	17		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (veh/h)	469	9	7	571	29	19		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type					None			
Median storage veh)								
vC, conflicting volume			478		1058	473		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
tC, single (s)			4.1		6.4	6.2		
tC, 2 stage (s)								
tF (s)			2.2		3.5	3.3		
p0 queue free %			99		88	97		
cM capacity (veh/h)			1084		247	591		
Direction, Lane #	EB 1	WB 1	NB 1					
Volume Total	478	578	48					
Volume Left	0	7	29					
Volume Right	9	0	19					
cSH	1700	1084	321					
Volume to Capacity	0.28	0.01	0.15					
Queue Length (ft)	0	0	13					
Control Delay (s)	0.0	0.2	18.2					
Lane LOS		Α	С					
Approach Delay (s)	0.0	0.2	18.2					
Approach LOS			С					
Intersection Summary								
Average Delay			0.9					
Intersection Capacity Ut	ilization		43.8%	10	CU Leve	el of Servic	9	Α
			2.3,0				- 	

	-	\rightarrow	•	←	1	~	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	f.			ર્ન	W		
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Volume (veh/h)	334	29	19	303	17	11	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (veh/h)	371	32	21	337	19	12	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type					None		
Median storage veh)							
vC, conflicting volume			403		766	387	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			98		95	98	
cM capacity (veh/h)			1155		364	661	
Direction, Lane #	EB 1	WB 1	NB 1				
Volume Total	403	358	31				
Volume Left	0	21	19				
Volume Right	32	0	12				
cSH	1700	1155	442				
Volume to Capacity	0.24	0.02	0.07				
Queue Length (ft)	0	1	6				
Control Delay (s)	0.0	0.7	13.8				
Lane LOS		Α	В				
Approach Delay (s)	0.0	0.7	13.8				
Approach LOS			В				
Intersection Summary							
Average Delay			0.8				
Intersection Capacity Ut	ilization		37.3%	[(CU Leve	el of Servi	ce
. ,							

	-	•	•	•	1	/		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	f.			ની	W			
Sign Control	Free			Free	Stop			
Grade	0%			0%	0%			
Volume (veh/h)	299	19	13	331	16	11		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (veh/h)	332	21	14	368	18	12		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type					None			
Median storage veh)								
vC, conflicting volume			353		739	343		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
tC, single (s)			4.1		6.4	6.2		
tC, 2 stage (s)								
tF (s)			2.2		3.5	3.3		
p0 queue free %			99		95	98		
cM capacity (veh/h)			1205		380	700		
Direction, Lane #	EB 1	WB 1	NB 1					
Volume Total	353	382	30					
Volume Left	0	14	18					
Volume Right	21	0	12					
cSH	1700	1205	467					
Volume to Capacity	0.21	0.01	0.06					
Queue Length (ft)	0	1	5					
Control Delay (s)	0.0	0.4	13.2					
Lane LOS	, <u>, , , , , , , , , , , , , , , , , , </u>	Α	В					
Approach Delay (s)	0.0	0.4	13.2					
Approach LOS			В					
Intersection Summary								
Average Delay			0.7					
Intersection Capacity Uti	ilization		35.5%	10	CULeve	el of Servic	9	Α
increasion capabily of			00.070		22 2010	2. 3. 33. VIO		, ,

Lystra Road – Jack Bennett Road Intersection Capacity Analyses

	-	•	•	←	1	/		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	ĥ		ሻ	1	W			
Sign Control	Free			Free	Stop			
Grade	0%			0%	0%			
Volume (veh/h)	241	73	70	239	122	228		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (veh/h)	268	81	78	266	136	253		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type					None			
Median storage veh)								
vC, conflicting volume			349		729	308		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
tC, single (s)			4.1		6.4	6.2		
tC, 2 stage (s)								
tF (s)			2.2		3.5	3.3		
p0 queue free %			94		63	65		
cM capacity (veh/h)			1210		365	732		
Direction, Lane #	EB 1	WB 1	WB 2	NB 1				
Volume Total	349	78	266	389				
Volume Left	0	78	0	136				
Volume Right	81	0	0	253				
cSH	1700	1210	1700	542				
Volume to Capacity	0.21	0.06	0.16	0.72				
Queue Length (ft)	0.21	5	0	146				
Control Delay (s)	0.0	8.2	0.0	26.8				
Lane LOS	0.0	A	0.0	D				
Approach Delay (s)	0.0	1.9		26.8				
Approach LOS	2.3			D				
Intersection Summary								
Average Delay			10.2					
Intersection Capacity Uti	ilization		56.4%	10		el of Servic	2	
intersection Capacity Of	ııızatıUH		JU.4 /0	IC	O LEVE	ei di Seivic	-	

	-	•	•	←	4	/	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	f.		ሻ	1	W		
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Volume (veh/h)	132	42	177	161	22	88	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (veh/h)	147	47	197	179	24	98	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type					None		
Median storage veh)							
vC, conflicting volume			193		742	170	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			86		93	89	
cM capacity (veh/h)			1380		328	874	
Direction, Lane #	EB 1	WB 1	WB 2	NB 1			
Volume Total	193	197	179	122			
Volume Left	0	197	0	24			
Volume Right	47	0	0	98			
cSH	1700	1380	1700	656			
Volume to Capacity	0.11	0.14	0.11	0.19			
Queue Length (ft)	0.11	12	0.11	17			
Control Delay (s)	0.0	8.0	0.0	11.7			
Lane LOS	0.0	Α	0.0	В			
Approach Delay (s)	0.0	4.2		11.7			
Approach LOS	0.0	4.2		В			
				Ь			
Intersection Summary							
Average Delay			4.4				
Intersection Capacity Ut	ilization		38.8%	IC	CU Leve	el of Servi	ice

	-	•	•	•	1	/		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	₽		ሻ	<u></u>	W			
Sign Control	Free		•	Free	Stop			
Grade	0%			0%	0%			
Volume (veh/h)	137	55	95	99	36	69		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (veh/h)	152	61	106	110	40	77		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type					None			
Median storage veh)								
vC, conflicting volume			213		504	183		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
tC, single (s)			4.1		6.4	6.2		
tC, 2 stage (s)								
tF (s)			2.2		3.5	3.3		
p0 queue free %			92		92	91		
cM capacity (veh/h)			1357		487	860		
Direction, Lane #	EB 1	WB 1	WB 2	NB 1				
Volume Total	213	106	110	117				
Volume Left	0	106	0	40				
Volume Right	61	0	0	77				
cSH	1700	1357	1700	681				
Volume to Capacity	0.13	0.08	0.06	0.17				
Queue Length (ft)	0	6	0	15				
Control Delay (s)	0.0	7.9	0.0	11.4				
Lane LOS		Α		В				
Approach Delay (s)	0.0	3.9		11.4				
Approach LOS				В				
Intersection Summary								
Average Delay			4.0					
Intersection Capacity Uti	ilization		34.5%	IC	CU Leve	el of Servi	ce	Α
						3. 22.		

	-	•	•	•	1	/		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	ĵ.		7	<u></u>	¥			
Sign Control	Free			Free	Stop			
Grade	0%			0%	0%			
Volume (veh/h)	344	99	74	348	153	242		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (veh/h)	382	110	82	387	170	269		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type					None			
Median storage veh)								
vC, conflicting volume			492		988	437		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
tC, single (s)			4.1		6.4	6.2		
tC, 2 stage (s)								
tF (s)			2.2		3.5	3.3		
p0 queue free %			92		33	57		
cM capacity (veh/h)			1071		253	619		
Direction, Lane #	EB 1	WB 1	WB 2	NB 1				
Volume Total	492	82	387	439				
Volume Left	0	82	0	170				
Volume Right	110	0	0	269				
cSH	1700	1071	1700	397				
Volume to Capacity	0.29	0.08	0.23	1.11				
Queue Length (ft)	0.23	6	0.23	393				
Control Delay (s)	0.0	8.6	0.0	109.4				
Lane LOS	5.0	Α	5.0	F				
Approach Delay (s)	0.0	1.5		109.4				
Approach LOS	3.0	1.0		F				
• •								
Intersection Summary			04.0					
Average Delay	::::::::::::::::::::::::::::::::::::::		34.8	17	2111	J at Camila		
Intersection Capacity Ut	ııı∠atıon		67.3%	IC	JU Leve	el of Servic	U	Е

	-	•	•	←	4	/	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	f.		ሻ	<u></u>	W		
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Volume (veh/h)	253	74	188	271	48	93	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (veh/h)	281	82	209	301	53	103	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type					None		
Median storage veh)							
vC, conflicting volume			363		1041	322	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			83		75	86	
cM capacity (veh/h)			1195		210	719	
Direction, Lane #	EB 1	WB 1	WB 2	NB 1			
Volume Total	363	209	301	157			
Volume Left	0	209	0	53			
Volume Right	82	0	0	103			
cSH	1700	1195	1700	394			
Volume to Capacity	0.21	0.17	0.18	0.40			
Queue Length (ft)	0	16	0	47			
Control Delay (s)	0.0	8.6	0.0	20.0			
Lane LOS		Α		С			
Approach Delay (s)	0.0	3.5		20.0			
Approach LOS	•			С			
Intersection Summary							
Average Delay			4.8				
Intersection Capacity Uti	ilization		50.7%	I	CU Leve	el of Serv	ice
			- /-	-			-

	→	\rightarrow	•	←	4	~		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	f.		ሻ	1	¥			
Sign Control	Free			Free	Stop			
Grade	0%			0%	0%			
Volume (veh/h)	258	87	101	205	63	73		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (veh/h)	287	97	112	228	70	81		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type					None			
Median storage veh)								
vC, conflicting volume			383		787	335		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
tC, single (s)			4.1		6.4	6.2		
tC, 2 stage (s)								
tF (s)			2.2		3.5	3.3		
p0 queue free %			90		79	89		
cM capacity (veh/h)			1175		326	707		
Direction, Lane #	EB 1	WB 1	WB 2	NB 1				
Volume Total	383	112	228	151				
Volume Left	0	112	0	70				
Volume Right	97	0	0	81				
cSH	1700	1175	1700	459				
Volume to Capacity	0.23	0.10	0.13	0.33				
Queue Length (ft)	0	8	0	36				
Control Delay (s)	0.0	8.4	0.0	16.7				
Lane LOS		Α		С				
Approach Delay (s)	0.0	2.8		16.7				
Approach LOS				С				
Intersection Summary								
Average Delay			4.0					
Intersection Capacity Ut	ilization		46.0%	IC	CU Leve	el of Serv	/ice	
. ,								

	-	\rightarrow	•	←	1	~	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	1		ሻ	<u></u>	¥		
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Volume (veh/h)	355	105	74	352	155	242	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (veh/h)	394	117	82	391	172	269	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type					None		
Median storage veh)							
vC, conflicting volume			511		1008	453	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			92		30	56	
cM capacity (veh/h)			1054		246	607	
Direction, Lane #	EB 1	WB 1	WB 2	NB 1			
Volume Total	511	82	391	441			
Volume Left	0	82	0	172			
Volume Right	117	0	0	269			
cSH	1700	1054	1700	386			
Volume to Capacity	0.30	0.08	0.23	1.14			
Queue Length (ft)	0	6	0	420			
Control Delay (s)	0.0	8.7	0.0	123.3			
Lane LOS		Α		F			
Approach Delay (s)	0.0	1.5		123.3			
Approach LOS				F			
Intersection Summary							
Average Delay			38.7				
Intersection Capacity Uti	ilization		68.5%	10		el of Service	2
intersection Capacity Of	m∠ati∪∏		00.5 /0	10	SO FEAR	SI OI SEIVIO	J C

	-	•	•	•	1	~	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	ĵ.		*		W		
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Volume (veh/h)	260	78	188	283	55	93	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	
Hourly flow rate (veh/h)	289	87	209	314	61	103	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type					None		
Median storage veh)							
vC, conflicting volume			376		1064	332	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
tC, single (s)			4.1		6.4	6.2	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			82		70	85	
cM capacity (veh/h)			1183		203	709	
Direction, Lane #	EB 1	WB 1	WB 2	NB 1			
Volume Total	376	209	314	164			
Volume Left	0	209	0	61			
Volume Right	87	0	0	103			
cSH	1700	1183	1700	368			
Volume to Capacity	0.22	0.18	0.18	0.45			
Queue Length (ft)	0.22	16	0	56			
Control Delay (s)	0.0	8.7	0.0	22.4			
Lane LOS	0.0	A	0.0	C			
Approach Delay (s)	0.0	3.5		22.4			
Approach LOS				С			
Intersection Summary							
Average Delay			5.2				
Intersection Capacity Uti	ilization		51.8%	10	CILLEVA	el of Servic	Α
Thorseoffor Capacity Of	2411011		01.070			or or our vic	

	→	\rightarrow	•	←	4	~		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	₽		ሻ	*	¥			
Sign Control	Free			Free	Stop			
Grade	0%			0%	0%			
Volume (veh/h)	265	91	101	213	67	73		
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90		
Hourly flow rate (veh/h)	294	101	112	237	74	81		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type					None			
Median storage veh)								
vC, conflicting volume			396		806	345		
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
tC, single (s)			4.1		6.4	6.2		
tC, 2 stage (s)								
tF (s)			2.2		3.5	3.3		
p0 queue free %			90		77	88		
cM capacity (veh/h)			1163		317	698		
Direction, Lane #	EB 1	WB 1	WB 2	NB 1				
Volume Total	396	112	237	156				
Volume Left	0	112	0	74				
Volume Right	101	0	0	81				
cSH	1700	1163	1700	443				
Volume to Capacity	0.23	0.10	0.14	0.35				
Queue Length (ft)	0	8	0	39				
Control Delay (s)	0.0	8.4	0.0	17.4				
Lane LOS		Α		С				
Approach Delay (s)	0.0	2.7		17.4				
Approach LOS				С				
Intersection Summary								
Average Delay			4.1					
Intersection Capacity Ut	ilization		47.0%	IC	CU Leve	el of Serv	ice	
2 2 4 2 2 2 2								

References:

- 1. Institute of Transportation Engineers, *Trip Generation*, 7th Edition, Washington D.C., 2003.
- 2. Institute of Transportation Engineers, *Trip Generation Handbook*, Washington D.C., March 2001.
- 3. National Research Council, Transportation Research Board, Highway Capacity Manual 2000, Washington D.C., 2000. Chapters 2, 16 and 17