January 25, 2005
Project # 9281.S1

Brantley Powell
PO Box 5365
Cary, N.C. 27512

Re: Soil/Site Evaluation on the Bland tract, 113- Acre Site on US 15-501—Chatham County, NC

Dear Mr. Powell:

Soil & Environmental Consultants, PA (S&EC) performed a preliminary soil and site evaluation on the above referenced tract. This was performed at your request as part of the preliminary planning process in order to determine areas of soil that have potential for subsurface and surface wastewater disposal. Fieldwork was performed on January 23, 2005. Please note that excessively thick or “cut over” vegetation exists on a majority of the site that did not allow S&EC to evaluate the entire site. Clearing of this vegetation must be done in order for us to conduct a detailed soil evaluation. Some unsuitable topographic features on the site may not have been cut out because they could not be seen.

S&EC traversed the property and observed landforms (slope, drainage patterns, past use, etc.) as well as soil conditions (depth, texture, structure, seasonal wetness, restrictive horizons, etc.) through the use of hand auger borings. The site was evaluated during moist soil conditions. From these observations, an evaluation of the site, relative to subsurface and surface disposal of wastewater, was developed. Soil areas were estimated in the field. The soil/site evaluation criteria used is that contained in 15 A NCAC 18A.1900 “Laws and Rules for Sewage Treatment and Disposal Systems”.

FINDINGS

This site is located in the acid crystalline Piedmont region of Chatham County. The upland soils on this tract are similar to the Wedowee and Helena soil series. The Wedowee soil series has a sandy loam surface material over a sandy clay loam subsoil. These soils are at least 24 inches deep to prohibitive soil characteristics and are generally useable for subsurface and surface septic systems. The Helena soils have a shallow depth to wetness conditions and are generally unsuitable for conventional subsurface septic systems, however they may be suitable for surface septic systems. Refer to the attached soil/site evaluation form for additional information.

The accompanying sketch map indicates the estimated areas with potential use for subsurface and surface wastewater disposal. The hatched units indicate areas of soils which are at least 24 inches deep to prohibitive soil characteristics and these areas have potential for a conventional septic system, a modified conventional (shallow placed lines with no fill required over the disposal area) or a low pressure pipe system (LPP) and/or ultra-shallow conventional (shallow placed lines with fill required over the disposal field) system. The cross hatched units indicate areas of soils which are at from 12-18 inches deep to prohibitive soil characteristics and these areas have potential for a subsurface drip, surface drip, and spray septic system. Unit “NE” on the attached map indicates areas that were not evaluated either due to thick vegetation or the presence of a house. Unit “UN”
on the attached map indicates areas of soils that are less than 12 inches to prohibitive soil characteristics and are generally unsuitable for the type of systems mentioned above.

The site plan for each lot must ensure that adequate soil area for system and repair is unaffected by site elements (house placement, driveway, wells, patios, decks, etc.) on that or adjacent lots. The area ultimately designated by the health department on the site plan for the septic system and repair must remain undisturbed (no mechanical clearing, excavation, heavy traffic or other significant site disturbing activities) until authorized by the health department. A lot with initially adequate usable soil area may be rendered unusable as a result of improper site planning and/or disturbance. A field layout of the proposed septic systems may be required as part of the individual lot development process.

Additional fieldwork may be necessary for any subdivision plan. This additional fieldwork may include flagging the boundary between the usable and unusable soils and locating that boundary either by GPS or a survey. That additional fieldwork will provide an accurate base map for a subdivision plan, especially where maximum lot yield is desired. Upon completion of a subdivision plan, S&EC recommends reviewing the plan before recording the subdivision lots.

It is important to note that any preliminary certification that a subdivision plan meets does not represent approval or a permit for any site work, nor does it guarantee issuance of an improvement permit for any lot. Final site approval for issuance of improvements is based on regulations in force at the time of permitting and is dependent on satisfactory completion of individual site evaluations following application for an improvement permit detailing a specific use and siting.

GENERAL SUBSURFACE WASTEWATER CONSIDERATIONS

Once potentially usable areas are located through vertical borings, the next consideration is the horizontal extent of those areas. The size and configuration of the usable soil area dictate the utility of that area. The size of a subsurface disposal field is determined by: 1) the design flow from the source (120 gallons/bedroom/day in residences), and 2) the long term acceptance rate (LTAR) of the soil (based on the hydraulic conductivity of the soil, a function of the soil's texture, mineralogy, structure, porosity, etc.). The configuration must be such that an efficient layout of disposal lines (on contour) is possible. An additional consideration is the required setbacks for the system from various elements such as wells (100'), streams and ponds (50') or more (depending on watershed regulations), property lines (10'), top of embankment (15'), watershed buffers, etc. (see Attachment 1).

The utility of a potential usable soil area for a subsurface system is most accurately determined by an on-ground layout of the proposed system. The total area needed for system and repair areas will depend upon the system type, the layout of that system and the total design flow (factors mentioned above). A typical area needed for a four bedroom residence is approximately 16,000 to 20,000 ft² (could be more depending on site features) or 1067 linear feet of conventional line (system and repair) or 1920 linear feet of LPP line (system and repair). These estimates reference Laws and Rules for Sewage Treatment and Disposal Systems for North Carolina and use a LTAR of 0.30 gpd/ft² for conventional septic systems (.1955), a LTAR of 0.30 gpd/ft² for modified conventional (.1956) and 0.10 gpd/ft² for LPP septic systems (.1957a). The health department will determine the ultimate LTAR after their lot evaluation. S&EC will be glad to assist in any system layout or sizing calculations, if requested.

This report discusses the general location of potentially usable soils for on-site subsurface and surface wastewater disposal and, of course, does not constitute or imply any approval or permit as
needed by the client from the local health department and the state. S&EC is a professional consulting firm that specializes in the delineation of soil areas for wastewater disposal and the layout and design of wastewater treatment systems. As a professional consulting firm, S&EC is hired for its professional opinion in these matters. The rules governing wastewater treatment (interpreted and governed by local and state agencies) are evolving constantly, and in many cases, affected by the opinions of individuals employed by these governing agencies. Because of this, S&EC cannot guarantee that areas delineated and/or systems designed will be permitted by the governing agencies. As always, S&EC recommends that anyone making financial commitments on a tract be fully aware of individual permit requirements on that tract prior to final action.

An individual septic system permit will be required for each lot prior to obtaining a building permit. This will involve a detailed evaluation by the local health department and possibly the state to determine, among other things, system size and layout, well, drive and house location. Only after developing this information can a final determination be made concerning specifics of system design and site utilization.

Soil & Environmental Consultants, PA is pleased to be of service in this matter and we look forward to assisting in any site analysis needs you may have in the future. Please feel free to call with any questions or comments.

Sincerely,

[Signature]

William S. Bums
NC Licensed Soil Scientist

Encl: Attachment 1
Soil/Site Evaluation Form
Soil Suitability Map
Setbacks For Surface Drip and Spray Irrigation Sheet
Attachment 1

.1950 Location of Sanitary Sewage Systems
(c) Every sanitary sewage treatment and disposal system shall be located at least the minimum horizontal
distance from the following:

(1) any private water supply source including a well or spring 100 feet
(2) any public water supply source 100 feet
(3) streams classified as WS-I 100 feet
(4) water classified as S.A. 100 feet from mean high water mark
(5) Other coastal waters 50 feet from mean high water mark
(6) any other stream, canal, marsh, or other surface waters 50 feet
(7) any Class I or Class II reservoir 100 feet from normal pool elevation
(8) any permanent storm water retention pond 50 feet from flood pool elevation
(9) any other lake or pond 50 feet from normal pool elevation
(10) any building foundation 5 feet
(11) any basement 15 feet
(12) any property line 10 feet
(13) top of slope of embankments or cuts of 2 feet or more vertical height 15 feet
(14) any water line 10 feet
(15) drainage systems:
 (A) Interceptor drains, foundation drains and storm water diversions
 (i) upslope 10 feet
 (ii) sideslope 15 feet
 (iii) downslope 25 feet
 (B) Groundwater lowering ditched and devices 25 feet
(16) any swimming pool 15 feet
(17) any other nitrification field (except repair area) 20 feet
 (b) Ground absorption, sewage treatment and disposal systems may be located closer than 100 feet
 from a private well supply, except springs and uncased wells located downslope and used as a
 source of drinking water, repairs, space limitations and other site-planning considerations but
 shall be located the maximum feasible distance and, in no case, less than 50 feet.
 (c) Nitrification fields and repair areas shall not be located under paved areas or areas subject to
 vehicular traffic. If effluent is to be conveyed under areas subject to vehicular traffic, ductile
 iron or its equivalent pipe shall be used. However, pipe specified in Rule .1955 (e) may be used
 if a minimum of 30 inches of compacted cover is provided over the pipe.

Note: Systems over 3000 GPD or an individual nitrification fields with a capacity of 1500 GPD or more have more
restrictive setback requirements, see .1950 (a) (17) (d) for specifics.
Soil/Site Evaluation for On-Site Wastewater Systems

Job #__________________

Date Evaluated: __________1/23/05____________ Evaluated by: __WB, LS, MA__________

Water Supply: On-Site Well Comm. Well Municipal Water Supply

Evaluation Method: Auger

.1940 Slope: 15 to 30%(PS)

.1941: (1) Group IV (PS): sandy clay silty clay clay

(2) Structure: Block Like (PS)

(3) Clay Mineralogy: Slightly Expansive (PS)

.1942 Soil Wetness (Depth to 2 chroma colors due to wetness): 36 to 48” (PS)

.1943 Soil Depth (to saprolite, rock or parent material): 36 to 48” (PS)

.1944 Restrictive Horizons (3” thick or more): 36 to 48” (PS)

.1945 Available Space (complete only if a layout has been done): System and repair available? NA

.1947 Overall Site Suitability: PS
Classification if Modification to Septic Tank System Proposed:

1) Shallow System (PS)
 Describe: __

2) Drainage and Restrictive Horizons (PS)
 Describe: __

3) Gravelless Trenches (PS)
 Describe: __

4) Interceptor Drains (PS)
 Describe: __

5) Steep Slopes (PS)
 Describe: __

6) Saprolite (PS)
 Describe: __

1957: (a) LPP System (PS)
 Describe: __

(b) Fill System (PS)
 Describe: __

(c) ATU (PS)
 Describe: __

1969: Innovative System (PS)
 Describe: __

Recommended LTAR _______ 0.30 ___________ gpd/ft² trench bottom
<table>
<thead>
<tr>
<th>DRIP</th>
<th>SPRAY</th>
<th>PARAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>10’</td>
<td>100’</td>
<td>INTERCEPTOR DRAINS, AND SURFACE WATER DIVERIONS (UPSLOPE FROM SYSTEM).</td>
</tr>
<tr>
<td>15’</td>
<td>200’</td>
<td>RESIDENCE FOUNDATION / BASEMENT</td>
</tr>
<tr>
<td>15</td>
<td>15’</td>
<td>2’ CUT EMBANKMENT.</td>
</tr>
<tr>
<td>25’</td>
<td>100’</td>
<td>INTERCEPTOR DRAINS, SURFACE WATER DIVERIONS, AND GROUND WATER LOWERING / SURFACE DRAINAGE DITCHES (DOWNSLOPE FROM SYSTEM).</td>
</tr>
<tr>
<td>50’</td>
<td>50’</td>
<td>PUBLIC RIGHT-OF-WAY SURFACE DISPOSAL</td>
</tr>
<tr>
<td>50’</td>
<td>150’</td>
<td>ANY PROPERTY LINE</td>
</tr>
<tr>
<td>100’</td>
<td>400’</td>
<td>PLACE OF PUBLIC ASSEMBLY OR HABITABLE RESIDENCE OFF PROPERTY.</td>
</tr>
<tr>
<td>100’</td>
<td>100’</td>
<td>ANY SWIMMING POOL, ANY WELL, ANY PUBLIC OR PRIVATE WATER SUPPLY, AND ANY LAKE OR IMPOUNDMENT.</td>
</tr>
</tbody>
</table>

- SOME COUNTIES (i.e., WAKE) MAY HAVE ADDITIONAL FOUNDATION SETBACK REQUIREMENTS.

- ANY OR ALL OF THESE SETBACKS MAY BE VARIED IF THE ADJACENT PROPERTY OWNERS SIGN A WAIVER/PERMISSION NOTICE.

- SETBACKS FOR TERTIARY TREATED EFFLUENT TO BE APPLIED TO GOLF COURSES VARY FROM THIS TABLE.